
IBM Parallel Environment for AIX 5L

MPI Programming Guide

Version 4 Release 2

SA22-7945-02

���

IBM Parallel Environment for AIX 5L

MPI Programming Guide

Version 4 Release 2

SA22-7945-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 223.

Third Edition (April 2005)

This edition applies to Version 4, Release 2 of IBM Parallel Environment for AIX 5L (product number 5765-F83) and

to all subsequent releases and modifications until otherwise indicated in new editions. This edition replaces

SA22-7945-01. Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to

the left of the change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has

been removed, address your comments to:

 IBM Corporation, Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States and Canada): 1+845+432-9405

 FAX (Other Countries) Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . vii

About this book . ix

Who should read this book . ix

How this book is organized . ix

Conventions and terminology used in this book . x

Abbreviated names . x

Prerequisite and related information . xi

Using LookAt to look up message explanations . xi

How to send your comments . xii

National language support (NLS) . xii

Summary of changes for Parallel Environment 4.2 . xii

Chapter 1. Performance Considerations for the MPI Library 1

Message transport mechanisms . 1

Shared memory considerations . 2

MPI IP performance . 2

User Space considerations . 3

MPI point-to-point communications . 3

Eager messages . 3

Rendezvous messages . 5

Polling and single thread considerations . 6

LAPI send side copy . 7

Striping . 8

Remote Direct Memory Access (RDMA) considerations . 9

Other considerations . 9

Chapter 2. Profiling message passing . 11

AIX profiling . 11

MPI nameshift profiling . 11

MPI Nameshift profiling procedure . 11

Chapter 3. Using shared memory . 15

Point-to-point communications . 15

Collective communications . 15

Shared memory performance considerations . 16

Reclaiming shared memory . 16

Using POE with multiple Ethernet adapters and shared memory 16

Chapter 4. Performing parallel I/O with MPI . 19

Definition of MPI-IO . 19

Features of MPI-IO . 19

Considerations for MPI-IO . 20

MPI-IO API user tasks . 20

Working with files . 21

Error handling . 22

Working with Info objects . 23

Using datatype constructors . 24

Setting the size of the data buffer . 24

MPI-IO file inter-operability . 24

Chapter 5. Programming considerations for user applications in POE 25

The MPI library . 25

The signal library has been removed . 25

© Copyright IBM Corp. 1993, 2005 iii

||

||
||
||
||
||
||
||
||
||
||
||
||
||

||
||

||

||

Parallel Operating Environment overview . 25

POE user limits . 26

Exit status . 26

POE job step function . 27

POE additions to the user executable . 27

Signal handlers . 28

Handling AIX signals . 28

Do not hard code file descriptor numbers . 29

Termination of a parallel job . 29

Do not run your program as root . 30

AIX function limitations . 30

Shell execution . 30

Do not rewind STDIN, STDOUT, or STDERR . 30

Do not match blocking and non-blocking collectives . 30

Passing string arguments to your program correctly . 31

POE argument limits . 31

Network tuning considerations . 31

Standard I/O requires special attention . 32

Reserved environment variables . 33

AIX message catalog considerations . 33

Language bindings . 33

Available virtual memory segments . 34

Using a switch clock as a time source . 34

Running applications with large numbers of tasks . 35

Running POE with MALLOCDEBUG . 35

Threaded programming . 36

Running single threaded applications . 36

POE gets control first and handles task initialization . 37

Limitations in setting the thread stack size . 37

Forks are limited . 37

Thread-safe libraries . 37

Program and thread termination . 37

Order requirement for system includes . 38

Using MPI_INIT or MPI_INIT_THREAD . 38

Collective communication calls . 38

Support for M:N threads . 38

Checkpoint and restart limitations . 39

64-bit application considerations . 42

MPI_WAIT_MODE: the nopoll option . 43

Mixed parallelism with MPI and threads . 43

Using MPI and LAPI in the same program . 43

Differences between MPI in PE 3.2 and PE Version 4 . 44

Differences between MPI in PE 4.1 and PE 4.2 . 45

Other differences . 45

POE-supplied threads . 45

Chapter 6. Using error handlers . 47

Predefined error handler for C++ . 47

Chapter 7. Predefined MPI datatypes . 49

Special purpose datatypes . 49

Datatypes for C language bindings . 49

Datatypes for FORTRAN language bindings . 50

Datatypes for reduction functions (C reduction types) . 50

Datatypes for reduction functions (FORTRAN reduction types) 51

Chapter 8. MPI reduction operations . 53

Predefined operations . 53

Datatype arguments of reduction operations . 53

Valid datatypes for the op option . 54

iv IBM PE for AIX 5L V4 R2: MPI Programming Guide

||

||

||
||

||

||
||

Examples . 55

C example . 55

FORTRAN example . 55

Chapter 9. C++ MPI constants . 57

Error classes . 57

Maximum sizes . 58

Environment inquiry keys . 58

Predefined attribute keys . 59

Results of communicator and group comparisons . 59

Topologies . 59

File operation constants . 59

MPI-IO constants . 59

One-sided constants . 60

Combiner constants used for datatype decoding functions . 60

Assorted constants . 60

Collective constants . 60

Error handling specifiers . 60

Special datatypes for construction of derived datatypes . 61

Elementary datatypes (C and C++) . 61

Elementary datatypes (FORTRAN) . 61

Datatypes for reduction functions (C and C++) . 61

Datatypes for reduction functions (FORTRAN) . 61

Optional datatypes . 62

Collective operations . 62

Null handles . 62

Empty group . 62

Threads constants . 63

FORTRAN 90 datatype matching constants . 63

Chapter 10. MPI size limits . 65

System limits . 65

Maximum number of tasks and tasks per node . 67

Chapter 11. POE environment variables and command-line flags 69

MP_BUFFER_MEM details . 82

Chapter 12. Parallel utility subroutines . 87

mpc_isatty . 89

MP_BANDWIDTH, mpc_bandwidth . 91

MP_DISABLEINTR, mpc_disableintr . 96

MP_ENABLEINTR, mpc_enableintr . 99

MP_FLUSH, mpc_flush . 102

MP_INIT_CKPT, mpc_init_ckpt . 104

MP_QUERYINTR, mpc_queryintr . 106

MP_QUERYINTRDELAY, mpc_queryintrdelay . 109

MP_SET_CKPT_CALLBACKS, mpc_set_ckpt_callbacks . 110

MP_SETINTRDELAY, mpc_setintrdelay . 113

MP_STATISTICS_WRITE, mpc_statistics_write . 114

MP_STATISTICS_ZERO, mpc_statistics_zero . 117

MP_STDOUT_MODE, mpc_stdout_mode . 118

MP_STDOUTMODE_QUERY, mpc_stdoutmode_query . 121

MP_UNSET_CKPT_CALLBACKS, mpc_unset_ckpt_callbacks 123

pe_dbg_breakpoint . 125

pe_dbg_checkpnt . 131

pe_dbg_checkpnt_wait . 135

pe_dbg_getcrid . 137

pe_dbg_getrtid . 138

pe_dbg_getvtid . 139

pe_dbg_read_cr_errfile . 140

Contents v

||

||

pe_dbg_restart . 141

Chapter 13. Parallel task identification API subroutines 145

poe_master_tasks . 146

poe_task_info . 147

Appendix A. MPE subroutine summary . 149

Appendix B. MPE subroutine bindings . 151

Bindings for non-blocking collective communication . 151

Appendix C. MPI subroutine and function summary 155

Appendix D. MPI subroutine bindings . 175

Bindings for collective communication . 175

Bindings for communicators . 179

Bindings for conversion functions . 182

Bindings for derived datatypes . 183

Bindings for environment management . 189

Bindings for external interfaces . 191

Bindings for group management . 193

Bindings for Info objects . 195

Bindings for memory allocation . 196

Bindings for MPI-IO . 197

Bindings for MPI_Status objects . 204

Bindings for one-sided communication . 205

Bindings for point-to-point communication . 208

Binding for profiling control . 213

Bindings for topologies . 214

Appendix E. PE MPI buffer management for eager protocol 217

Appendix F. Accessibility . 221

Accessibility information . 221

Using assistive technologies . 221

Notices . 223

Trademarks . 225

Acknowledgments . 226

Glossary . 227

Index . 235

vi IBM PE for AIX 5L V4 R2: MPI Programming Guide

||

Tables

 1. Conventions and terminology used in this book . x

 2. Parallel Environment abbreviations . x

 3. How the clock source is determined . 35

 4. POE/MPI/LAPI Thread Inventory . 46

 5. Special purpose datatypes . 49

 6. Datatypes for C language bindings . 49

 7. Datatypes for FORTRAN language bindings . 50

 8. Datatypes for reduction functions (C reduction types) 50

 9. Datatypes for reduction functions (FORTRAN reduction types)) 51

10. Predefined reduction operations . 53

11. Valid datatype arguments . 53

12. Valid datatypes for the op option . 54

13. MPI eager limits . 66

14. Task limits for parallel jobs . 67

15. POE environment variables and command-line flags for partition manager control 70

16. POE environment variables/command-line flags for job specification 73

17. POE environment variables/command-line flags for I/O control 74

18. POE environment variables/command-line flags for diagnostic information 76

19. POE environment variables and command-line flags for Message Passing Interface (MPI) 76

20. POE environment variables/command-line flags for corefile generation 83

21. Other POE environment variables/command-line flags 83

22. Parallel utility subroutines . 87

23. MPE Subroutines . 149

24. Bindings for non-blocking collective communication 151

25. MPI subroutines and functions . 155

26. Bindings for collective communication . 175

27. Bindings for communicators . 179

28. Bindings for conversion functions . 182

29. Bindings for derived datatypes . 183

30. Bindings for environment management . 189

31. Binding for external interfaces . 191

32. Bindings for groups . 193

33. Bindings for Info objects . 195

34. Bindings for memory allocation . 196

35. Bindings for MPI-IO . 197

36. Bindings for MPI_Status objects . 205

37. Bindings for one-sided communication . 205

38. Bindings for point-to-point communication . 208

39. Binding for profiling control . 214

40. Bindings for topologies . 214

© Copyright IBM Corp. 1993, 2005 vii

||
||

||

||

viii IBM PE for AIX 5L V4 R2: MPI Programming Guide

About this book

This book provides information about parallel programming, as it relates to IBM®’s

implementation of the Message Passing Interface (MPI) standard for Parallel

Environment for AIX® (PE). References to RS/6000® SP™ or SP include currently

supported IBM Eserver Cluster 1600 hardware.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard, Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6,

1995 and MPI-2: Extensions to the Message-Passing Interface, University of Tennessee,

Knoxville, Tennessee, July 18, 1997. The second volume includes a section

identified as MPI 1.2, with clarifications and limited enhancements to MPI 1.1. It

also contains the extensions identified as MPI 2.0. The three sections, MPI 1.1, MPI

1.2, and MPI 2.0 taken together constitute the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 enhancements, except the contents of the chapter

titled ″Process creation and management.″

If you believe that PE MPI does not comply, in any way, with the MPI standard for

the portions that are implemented, please contact IBM service.

Who should read this book

This book is intended for experienced programmers who want to write parallel

applications using the C, C++, or FORTRAN programming language. Readers of

this book should know C , C++, and FORTRAN and should be familiar with AIX

and UNIX® commands, file formats, and special files. They should also be familiar

with the MPI concepts. In addition, readers should be familiar with

distributed-memory machines.

How this book is organized

This book is organized as follows:

v Chapter 1, “Performance Considerations for the MPI Library,” on page 1.

v Chapter 2, “Profiling message passing,” on page 11.

v Chapter 3, “Using shared memory,” on page 15.

v Chapter 4, “Performing parallel I/O with MPI,” on page 19.

v Chapter 5, “Programming considerations for user applications in POE,” on page

25.

v Chapter 6, “Using error handlers,” on page 47.

v Chapter 7, “Predefined MPI datatypes,” on page 49.

v Chapter 8, “MPI reduction operations,” on page 53.

v Chapter 9, “C++ MPI constants,” on page 57.

v Chapter 10, “MPI size limits,” on page 65.

v Chapter 11, “POE environment variables and command-line flags,” on page 69.

v Chapter 12, “Parallel utility subroutines,” on page 87.

v Chapter 13, “Parallel task identification API subroutines,” on page 145.

© Copyright IBM Corp. 1993, 2005 ix

v Appendix A, “MPE subroutine summary,” on page 149.

v Appendix B, “MPE subroutine bindings,” on page 151.

v Appendix C, “MPI subroutine and function summary,” on page 155.

v Appendix D, “MPI subroutine bindings,” on page 175.

v Appendix E, “PE MPI buffer management for eager protocol,” on page 217.

Conventions and terminology used in this book

This book uses the following typographic conventions:

 Table 1. Conventions and terminology used in this book

Convention Usage

bold Bold words or characters represent system elements that you must use literally, such

as: command names, file names, flag names, path names, PE component names

(pedb, for example), and subroutines.

constant width Examples and information that the system displays appear in constant-width

typeface.

italic Italicized words or characters represent variable values that you must supply.

Italics are also used for book titles, for the first use of a glossary term, and for general

emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

In addition to the highlighting conventions, this manual uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this manual presents the instruction as:

ENTER

tool

Abbreviated names

Some of the abbreviated names used in this book follow.

 Table 2. Parallel Environment abbreviations

Short Name Full Name

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

x IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

Table 2. Parallel Environment abbreviations (continued)

Short Name Full Name

PE IBM Parallel Environment for AIX

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

pSeries® IBM Eserver pSeries

PSSP IBM Parallel System Support Programs for AIX

RISC reduced instruction set computer

RSCT Reliable Scalable Cluster Technology

rsh remote shell

RS/6000 IBM RS/6000

SP IBM RS/6000 SP

STDERR standard error

STDIN standard input

STDOUT standard output

Prerequisite and related information

The Parallel Environment library consists of:

v IBM Parallel Environment for AIX: Introduction, SA22-7947

v IBM Parallel Environment for AIX: Installation, GA22-7943

v IBM Parallel Environment for AIX: Messages, GA22-7944

v IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7945

v IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7946

v IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7948

v IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7949

To access the most recent Parallel Environment documentation in PDF and HTML

format, refer to the IBM Eserver Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Both the current Parallel Environment books and earlier versions of the library are

also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the

book’s publication number. The publication number for each of the Parallel

Environment books is listed after the book title in the preceding list.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX and Linux®:

About this book xi

|

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

How to send your comments

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have any comments about this book or any other

PE documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the

version of PE, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of the

message catalogs are shipped with the PE licensed program, but your site may be

using its own translated message catalogs. The PE components use the AIX

environment variable NLSPATH to find the appropriate message catalog.

NLSPATH specifies a list of directories to search for message catalogs. The

directories are searched, in the order listed, to locate the message catalog. In

resolving the path to the message catalog, NLSPATH is affected by the values of

the environment variables LC_MESSAGES and LANG. If you get an error saying

that a message catalog is not found and you want the default message catalog:

ENTER

export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following

directories:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG. For more

information on NLS and message catalogs, see AIX: General Programming Concepts:

Writing and Debugging Programs.

Summary of changes for Parallel Environment 4.2

This release of IBM Parallel Environment for AIX contains a number of functional

enhancements, including:

xii IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|

|

|
|

v Support for POWER3™, POWER4™, and POWER5™ servers running AIX 5L™

V5.2 or AIX 5L V5.3

v Support for IBM Eserver p5 servers and the High Performance Switch (HPS)

with AIX 5L V5.2 only, and coexistence in a cluster managed by Cluster Systems

Management (CSM)

v Remote Direct Memory Access (RDMA) for bulk data copy and transfer, and

large contiguous messages, only on the HPS

v Support for striping of messages over multiple adapters attached to the pSeries

HPS

v MPI support for 128 tasks per node using shared memory

v Support for LoadLeveler® performance improvements

v Support for up to 8192 tasks in a single job, with improved memory utilization

for large jobs

v MPI collectives algorithm and optimization improvements

v MPI shared memory collectives use AIX 5L V5.3 cross-memory attachment

enhancements

v Point-to-point messages in shared memory use AIX 5L V5.3 cross-memory

attachment enhancements

v MPI/LAPI performance statistics

v The SP Switch is no longer supported

v PE 4.2 is the last release of PE that will support Parallel Systems Support

Programs for AIX (PSSP), the SP Switch2, and POWER3 servers

About this book xiii

|
|

|
|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|

|

|
|

xiv IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 1. Performance Considerations for the MPI Library

This chapter provides performance considerations for the MPI library, including

the following topics:

v “Message transport mechanisms.”

v “MPI point-to-point communications” on page 3.

v “Polling and single thread considerations” on page 6.

v “LAPI send side copy” on page 7

v “Striping” on page 8.

v “Remote Direct Memory Access (RDMA) considerations” on page 9.

v “Other considerations” on page 9.

Performance of jobs using the MPI library can be affected by the setting of various

environment variables. The complete list is provided in Chapter 11, “POE

environment variables and command-line flags,” on page 69 and in IBM Parallel

Environment for AIX 5L: Operation and Use, Volume 1. Programs that conform to the

MPI standard should run correctly with any combination of environment variables

within the supported ranges.

The defaults of these environment variables are generally set to optimize the

performance of the User Space library for MPI programs with one task per

processor, using blocking communication. Blocking communication includes sets of

non-blocking send and receive calls followed immediately by wait or waitall, as

well as explicitly blocking send and receive calls. Applications that use other

programming styles, in particular those that do significant computation between

posting non-blocking sends or receives and calling wait or waitall, may see a

performance improvement if some of the environment variables are changed.

Message transport mechanisms

The MPI Library conforms to the MPI-2 Standard, with the exception of the

chapter on Process Creation and Management, which is not implemented.

The MPI library is a dynamically loaded shared object, whose symbols are linked

into the user application. At run time, when MPI_Init is called by the application

program, the various environment variables are read and interpreted, and the

underlying transport is initialized. Depending on the setting of the transport

variable MP_EUILIB, MPI initializes lower level protocol support for a User Space

packet mode, or for a UDP/IP socket mode. By default, the shared memory

mechanism for point-to-point messages (and in 64-bit applications, collective

communication) is also initialized.

Three message transport mechanisms are supported:

Shared memory

Used for tasks on the same node (as processes under the same

operating system image)

UDP/IP Used for tasks on nodes connected with an IP network

© Copyright IBM Corp. 1993, 2005 1

|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|

||

User Space Used for tasks having windows allocated on various versions of

IBM high speed interconnects such as the pSeries High

Performance Switch

These topics are addressed in the following sections, in detail:

v “Shared memory considerations”

v “MPI IP performance.”

v “User Space considerations” on page 3.

Shared memory considerations

An MPI job can use a combination of shared memory and UDP/IP message

transport mechanisms, or a combination of shared memory and User Space

message transport mechanisms, for intertask communication. An MPI job may not

use a combination of UDP/IP and User Space message transport mechanisms.

Tasks on the same node can use operating system shared memory transport for

point-to-point communication. Shared memory is used by default, but may be

turned off with the environment variableMP_SHARED_MEMORY. In addition,

64-bit applications are provided an optimization where the MPI library uses shared

memory directly for selected collective communications, rather than just mapping

the collectives into point-to-point communications. The collective calls for which

this optimization is provided include MPI_Barrier, MPI_Reduce, MPI_Bcast,

MPI_Allreduce and others. This optimization is enabled by default, and disabled

by setting environment variable MP_SHARED_MEMORY to no. For most

programs, enabling the shared memory transport for point-to-point and collective

calls provides better performance than using the network transport.

For more information on shared memory, see Chapter 3, “Using shared memory,”

on page 15.

MPI IP performance

MPI IP performance is affected by the socket-buffer sizes for sending and receiving

UDP data. These are defined by two network tuning parameters udp_sendspace

and udp_recvspace. When the buffer for sending data is too small and quickly

becomes full, UDP data transfer can be delayed. When the buffer for receiving data

is too small, incoming UDP data can be dropped due to insufficient buffer space,

resulting in send-side retransmission and very poor performance.

LAPI, on which MPI is running, tries to increase the size of send and receive

buffers to avoid this performance degradation. However, the buffer sizes,

udp_sendspace and udp_recvspace, cannot be greater than another network

tuning parameter sb_max, which can be changed only with privileged access rights

(usually root). For optimal performance, it is suggested that sb_max be increased

to a relatively large value. For example, increase sb_max from the default of

1048576 to 8388608 before running MPI IP jobs.

The UDP/IP transport can be used on clustered servers where a high speed

interconnect is not available, or can use the IP mode of the high speed

interconnect, if desired. This transport is often useful for program development or

initial testing, rather than production. Although this transport does not match User

Space performance, it consumes only virtual adapter resources rather than limited

real adapter resources.

2 IBM PE for AIX 5L V4 R2: MPI Programming Guide

||
|
|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

MPI with UDP/IP transport should be viewed as an IP application for system

performance tuning. This transport is selected by setting the environment variable

MP_EUILIB to ip (must be lower case). The user may set the UDP packet size

using the environment variable MP_UDP_PACKET_SIZE, which should be set

slightly smaller than the MTU of the IP network being used. The MP_

environment variables described in the remainder of this chapter may also affect

performance with the IP transport, but have generally been designed with the

optimized User Space transport in mind.

Details on the network tuning parameters, such as their definitions and how to

change their values, can be found in the man page for the AIX no command.

User Space considerations

The User Space transport binds one or more real adapter resources (called User

Space windows) to each MPI task. The number of windows available depends on

adapter type, but it is common for systems fully loaded with production jobs to

have every available window committed. User Space is selected by setting the

environment variable MP_EUILIB to us (must be lower case). This is the transport

for which the MPI library is optimized.

The underlying transport for MPI is LAPI, which is packaged with AIX as part of

the RSCT file set. LAPI provides a one-sided message passing API, with

optimizations to support MPI. Except when dealing with applications that make

both MPI and direct LAPI calls, or when considering compatibility of PE and RSCT

levels, there is usually little need for the MPI user to be concerned about what is in

the MPI layer and what is in the LAPI layer.

MPI point-to-point communications

To understand the various environment variables, it is useful to describe briefly

how MPI manages point-to-point messages. Parts of this management are now in

the LAPI LLP (Lower Level Protocol), which provides a reliable message delivery

layer and a mechanism for asynchronous progress in MPI. Because LAPI runs

above an unreliable packet layer, LAPI must deal with detecting and retransmitting

any lost packet.

An MPI application program sends a message using either a blocking or a

non-blocking send. A send is considered locally complete when the blocking send

call returns, or when the wait associated with the non-blocking send returns. MPI

defines a standard send as one that may complete before the matching receive is

posted, or can delay its completion until the matching receive is posted.This

definition allows the MPI library to improve performance by managing small

standard sends with eager protocol and larger ones with rendezvous protocol. A

small message is one no larger than the eager limit setting.

The eager limit is set by the MP_EAGER_LIMIT environment variable or the

-eager_limit command-line flag. For more information on the MP_EAGER_LIMIT

environment variable, see Chapter 11, “POE environment variables and

command-line flags,” on page 69, and Appendix E, “PE MPI buffer management

for eager protocol,” on page 217.

Eager messages

An eager send passes its buffer pointer, communicator, destination, length, tag and

datatype information to a LLP reliable message delivery function. If the message is

small enough, it is copied from the user’s buffer into a protocol managed buffer,

Chapter 1. Performance Considerations for the MPI Library 3

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|

and the MPI send is marked complete. This makes the user’s send buffer

immediately available for reuse. A longer message is not copied, but is transmitted

directly from the user’s buffer. In this second case, the send cannot be marked

complete until the data has reached the destination and the packets have been

acknowledged. It is because either the message itself, or a copy of it, is preserved

until it can be confirmed that all packets arrived safely, that the LLP can be

considered reliable. The strategy of making temporary copies of small messages in

case a retransmission is required preserves reliability while it reduces the time that

a small MPI send must block.

Whenever a send is active, and at other convenient times such as during a

blocking receive or wait, a message dispatcher is run. This dispatcher sends and

receives messages, creating packets for and interpreting packets from the lower

level packet driver (User Space or IP). Since UDP/IP and User Space are both

unreliable packet transports (packets may be dropped during transport without an

error being reported), the message dispatcher manages packet acknowledgment

and retransmission with a sliding window protocol. This message dispatcher is

also run on a hidden thread once every few hundred milliseconds and, if

environment variable MP_CSS_INTERRUPT is set, upon notification of packet

arrival.

On the receive side, there are two distinct cases:

v The eager message arrives before the matching receive is posted.

v The receive is posted before the eager message arrives.

When the message dispatcher recognizes the first packet of an inbound message, a

header handler or upcall is invoked. This upcall is to a function within the MPI

layer that searches a list of descriptors for posted but unmatched receives. If a

match is found, the descriptor is unlinked from the unmatched receives list and

data will be copied directly from the packets to the user buffer. The receive

descriptor is marked by a second upcall (a completion handler), when the

dispatcher detects the final packet so that the MPI application can recognize that

the receive is complete.

If a receive is not found by the header handler upcall, an early arrival buffer is

allocated by MPI and the message data will be copied to that buffer. A descriptor

similar to a receive descriptor but containing a pointer to the early arrival buffer is

added to an early arrivals list. When an application does make a receive call, the

early arrivals list is searched. If a match is found:

1. The descriptor is unlinked from the early arrivals list.

2. Data is copied from the early arrival buffer to the user buffer.

3. The early arrival buffer is freed.

4. The descriptor (which is now associated with the receive) is marked so that the

MPI application can recognize that the receive is complete.

The size of the early arrival buffer is controlled by the MP_BUFFER_MEM

environment variable.

The difference between a blocking and non-blocking receive is that a blocking

receive does not return until the descriptor is marked complete, whether the

message is found as an early arrival or is sent later. A non-blocking receive leaves

a descriptor in the posted receives list if no match is found, and returns. The

subsequent wait blocks until the descriptor is marked complete.

4 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|

|
|

|
|
|
|
|

The MPI standard requires that a send not complete until it is guaranteed that its

data can be delivered to the receiver. For an eager send, this means the sender

must know in advance that there is sufficient buffer space at the destination to

cache the message if no posted receive is found. The PE MPI library accomplishes

this by using a credit flow control mechanism. At initialization time, each source to

destination pair is allocated a fixed, identical number of message credits. The

number of credits per pair is calculated based on environment variables

MP_EAGER_LIMIT, MP_BUFFER_MEM, and the total number of tasks in the job.

An MPI task sends eagerly to a destination as long as it has credits for that

destination, but it costs one credit to send a message. Each receiver has enough

space in its early arrival buffer to cache the messages represented by all credits

held by all possible senders.

If an eager message arrives and finds a match, the credit is freed immediately

because the early arrival buffer space that it represents is not needed. If data must

be buffered, the credit is tied up until the matching receive call is made, which

allows the early arrival buffer to be freed. PE MPI returns message flow control

credits by piggybacking them on some regular message going back to the sender, if

possible. If credits pile up at the destination and there are no application messages

going back, MPI must send a special purpose message to return the credits. For

more information on the early arrival buffer and the environment variables,

MP_EAGER_LIMIT and MP_BUFFER_MEM, see Chapter 11, “POE environment

variables and command-line flags,” on page 69 and Appendix E, “PE MPI buffer

management for eager protocol,” on page 217.

Rendezvous messages

For a standard send, PE MPI makes the decision whether to use an eager or a

rendezvous protocol based on the message length. For the standard MPI_Send and

MPI_Isend calls, messages whose size is not greater than the eager limit are sent

using eager protocol. Messages whose size is larger than the eager limit are sent

using rendezvous protocol. Thus, small messages can be eagerly sent, and

assuming that message credits are returned in a timely fashion, can continue to be

sent using the mechanisms described above. For large messages, or small messages

for which there are no message credits available, the message must be managed

with a rendezvous protocol.

Recall the following:

v The MPI definition for standard send promises the user that the message data

will be delivered whenever the matching receive is posted.

v Send side message completion is no indication that a matching receive was

found.

The decision made by an MPI implementation of standard send, to use eager

protocol in some cases and rendezvous protocol in other cases is based on a need

to allocate and manage buffer space for preserving eagerly sent message data in

the cases were there is no receive waiting. The MPI standard’s advice that a ’safe’

programming style must not assume a standard send will return before a matching

receive is found, is also based on the requirement that the MPI implementation

preserve any message data that it sends eagerly.

Since a zero byte message has no message data to preserve, even an MPI

implementation with no early arrival buffering should be able to complete a zero

byte standard send at the send side, whether or not there is a matching receive.

Thus, for PE MPI with MP_EAGER_LIMIT set to zero, a one byte standard send

Chapter 1. Performance Considerations for the MPI Library 5

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

will not complete until a matching receive is found, but a zero byte standard send

will complete without waiting for a rendezvous to determine whether a receive is

waiting.

A rendezvous message is sent in two stages:

1. A message envelope is sent containing the information needed for matching by

the receiver, and a message ID that is unique to the sender. This envelope

either matches a previously posted receive, or causes a descriptor to be put in

the list of early arrivals just as for an eager early arrival. Because the message

data has not been sent, no early arrival buffer is needed.

Whether the matching receive is found when the envelope arrives, or the

receive call is made later and matches a descriptor in the early arrivals list, an

’OK to send’ response goes back to the sender after the match. This ’OK to

send’ contains the ID by which the sender identifies the data to send, and also

an ID unique to the destination that identifies the match that was found.

2. When the sender gets an ’OK to send’ message, it sends the message data,

along with the destination side ID that identifies the receive that had been

matched. As the data arrives, it can be copied directly into the receive buffer

that was already identified as the match.

Eager messages require only one trip across the transport, while rendezvous

messages require three trips, but two of the trips are short, and the time is quickly

amortized for large messages. Using the rendezvous protocol ensures that there is

no need for temporary buffers to store the data, and no overhead from copying

packets to temporary buffers and then on to user buffers.

Polling and single thread considerations

A blocking send or receive, or an MPI wait call, causes MPI to invoke the message

dispatcher in a polling loop, processing packets as available until the specified

message is complete. This is generally the lowest latency programming model,

since packets are processed on the calling thread as soon as they arrive. The MPI

library also supports an interrupt mode, specified by the environment variable

MP_CSS_INTERRUPT, which causes an interrupt whenever a message packet

arrives at the receiving network port or window.

In User Space, this interrupt is implemented as an AIX dispatch of a service thread

that is created within each task at initialization time and is waiting on such an

event. This thread calls the message dispatcher to process the packet, including

invoking any upcalls to MPI for message matching or completion. Thus, while

packets are being processed, other user threads may continue to perform

computations. This is particularly useful if there are otherwise idle processors on

the node, but that situation is not common. It is more likely to be useful with

algorithms that allow communication to be scheduled well before the data is

needed, and have computations to be done using data that is already available

from a prior set of communications.

If all the processors are busy, enabling interrupt mode causes thread context

switching and contention for processors, which might cause the application to run

slower than it would in polling mode.

The behavior of the MPI library during message polling can also be affected by the

setting of the environment variable MP_WAIT_MODE. If set to sleep or yield, the

blocked MPI thread sleeps or yields periodically to allow the AIX dispatcher to

schedule other activity on the processor. This may be appropriate when the wait

6 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

call is part of a command processor thread. An alternate way of implementing this

behavior is with an MPI test command and user-invoked sleep or yield (or some

other mechanism to release a processor).

Environment variable MP_WAIT_MODE can also be set to nopoll, which polls the

message dispatcher for a short time (less than one millisecond) and then goes into

a thread wait for either an interrupt or a timer expiration. In general, if

MP_WAIT_MODE is set to nopoll, it is suggested that MP_CSS_INTERRUPT be

set to yes.

As mentioned above, packets are transferred during polling and when an interrupt

is recognized (which invokes the message dispatcher). The message dispatcher is

also invoked periodically, based on the AIX timer support. The time interval

between brief polls of the message dispatcher is controlled by environment

variable MP_POLLING_INTERVAL, specified in microseconds.

 The MPI library supports multiple threads simultaneously issuing MPI calls, and

provides appropriate internal locking to make sure that the library is thread safe

with respect to these calls. If the application makes MPI calls on only one thread

(or is a non-threaded program), and does not use the nonstandard MPE_I

nonblocking collectives, MPI-IO, or MPI one-sided features, the user may wish to

skip the internal locking by setting the environment variable

MP_SINGLE_THREAD to yes. Do not set MP_SINGLE_THREAD to yes unless

you are certain that the application is single threaded.

LAPI send side copy

Some applications may benefit from changing the parameters controlling the send

side copy mechanism. Because the send side buffering occurs at the level below

MPI, the effect as seen by an MPI user must allow for headers used by MPI. To

help you understand this as an MPI user, we must discuss it from a LAPI

perspective.

LAPI send side guarantees making a copy of any LAPI level message of up to 128

bytes, letting the send complete locally. An MPI message sent by an application

will have a header (or envelope) pre-appended by PE MPI before being sent as a

LAPI message. Therefore, the application message size from the MPI perspective is

less than from the LAPI perspective. The message envelope is no larger than 32

bytes. LAPI also maintains a limited pool of retransmission buffers larger than 128

bytes. If the application message plus MPI envelope exceeds 128 bytes, but is small

enough to fit a retransmission buffer, LAPI tries (but cannot guarantee) to copy it

to a retransmission buffer, allowing the MPI send to complete locally.

The size of the retransmission buffers is controlled by the environment variable

MP_REXMIT_BUF_SIZE, defaulting to a LAPI level message size of 16352 bytes.

The supported MPI application message size is reduced by the number of bytes

needed for the MPI envelope, which is 24 bytes for a 32-bit executable, or 32 bytes

for a 64-bit executable.

The number of retransmission buffers is controlled by the environment variable

MP_REXMIT_BUF_CNT. The retransmission buffers are pooled, and are not

assigned to a particular destination, so the appropriate number of buffers to

achieve a balance between performance gain and memory cost is affected by the

nature of the application and the system load.

Chapter 1. Performance Considerations for the MPI Library 7

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

If the message is successfully copied to a retransmission buffer, the local

completion of the MPI send is immediate. If the message is too large to fit in the

retransmission buffer, or if all the retransmission buffers are full (awaiting packet

acknowledgement from their destination), the send does not complete locally until

all message data has been received by the destination and acknowledged.

Programs that do a group of blocking sends of a large number of messages that are

expected to be sent eagerly may benefit from increasing the number of

retransmission buffers. If memory allocation is of special concern, applications

should set the retransmission buffer size to be no larger than the MPI eager limit

plus the size of the MPI header.

For more information on the MP_EAGER_LIMIT environment variable, see

Chapter 11, “POE environment variables and command-line flags,” on page 69 and

Appendix E, “PE MPI buffer management for eager protocol,” on page 217.

Striping

With PE Version 4, protocol striping is supported for HPS switch adapters

(striping, failover, and recovery are not supported over non-HPS adapters such as

Gigabit Ethernet). If the windows (or UDP ports) are on multiple adapters and one

adapter or link fails, the corresponding windows are closed and the remaining

windows are used to send messages. When the adapter or link is restored

(assuming that the node itself remains operational), the corresponding windows

are added back to the list of windows used for striping.

Striping is enabled when multiple instances are selected for communication. On a

multi-network system, one way to do this is by choosing the composite device (set

environment variable MP_EUIDEVICE to sn_all or csss), which requests allocation

of one window on each network available on the node. For a node with two

adapter links in a configuration where each link is part of a separate network, the

result is a window on each of the two networks. For short messages and messages

using the User Space FIFO mechanism, the CPU and memory bandwidth limits for

copying user buffer data to the User Space FIFO packet buffers for transmission

limits the achievable communication performance. Therefore, striping user space

FIFO messages provides no performance benefit other than possibly better load

balancing of the message traffic between the two networks. However, striping

messages that use the Remote Direct Memory Access (RDMA) or bulk transfer

mechanism can result in significant performance gains, since the data transfer

function is off-loaded to the adapters, and there is very little CPU involvement in

the communication.

For single network configurations, striping, failover, and recovery can still be used

by requesting multiple instances (setting the environment variable

MP_INSTANCES to a value greater than 1). However, unless the system is

configured with multiple adapters on the network, and window resources are

available on more than one adapter, failover and recovery is not necessarily

possible, because both windows may end up on the same adapter. Similarly,

improved striping performance using RDMA can be seen only if windows are

allocated from multiple adapters on the single network.

There are some considerations that users of 32-bit applications must take into

account before deciding to use the striping, failover, and recovery function. A

32-bit application is limited to 16 segments. The standard AIX memory model for

32-bit applications claims five of these, and expects the application to allocate up to

eight segments (2 GB) for application data (the heap, specified with compile option

-bmaxdata). For example, -bmaxdata:0x80000000 allocates the maximum eight

8 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

segments, each of which is 256 MB. The communication subsystem takes an

additional, variable number of segments, depending on options chosen at run time.

In some circumstances, for 32-bit applications the total demand for segments can

be greater than 16 and a job will be unable to start, or will run with reduced

performance. If your application is using a very large heap and you consider

enabling striping, see section User Space striping with failover in the chapter

Managing POE jobs of IBM Parallel Environment for AIX 5L: Operation and Use,

Volume 1.

Remote Direct Memory Access (RDMA) considerations

Some MPI applications benefit from the use of the bulk transfer mode. This

transfer mode is enabled by setting the LoadLeveler keyword @bulkxfer to yes or

setting the environment variable MP_USE_BULK_XFER to yes for interactive jobs.

This transparently causes portions of the user’s virtual address space to be pinned

and mapped to a communications adapter. The low level communication protocol

will then use Remote Direct Memory Access (RDMA, also known as bulk transfer)

to copy (pull) data from the send buffer to the receive buffer as part of the MPI

receive. The minimum message size for which RDMA will be used can be adjusted

by setting environment variable MP_BULK_MIN_MSG_SIZE.

This especially benefits applications that either transfer relatively large amounts of

data (greater than 150 KB) in a single MPI call, or overlap computation and

communication, since the CPU is no longer required to copy data. RDMA

operations are considerably more efficient when large (16 MB) pages are used

rather than small (4 KB) pages, especially for large transfers. In order to use the

bulk transfer mode, the system administrator must enable RDMA communication

and LoadLeveler must be configured to use RDMA. Not all communications

adapters support RDMA.

For a quick overview of the RDMA feature, and the steps that a system

administrator must take to enable or disable the RDMA feature, see Switch Network

Interface for ERserver pSeries High Performance Switch Guide and Reference.

For information on using LoadLeveler with bulk data transfer, see these sections in

LoadLeveler: Using and Administering:

v The chapter: Configuring the LoadLeveler environment, section Enabling support for

bulk data transfer.

v The chapter: Building and submitting jobs, section Using bulk data transfer.

Other considerations

The information provided earlier in this chapter, and the controlling variables,

apply to most applications. There are a few others that are useful in special

circumstances. These circumstances may be identified by setting the

MP_STATISTICS environment variable to print and examining the task statistics

at the end of an MPI job.

MP_ACK_THRESH

This environment variable changes the threshold for the update of the packet

sliding window. Reducing the value causes more frequent update of the

window, but generates additional message traffic.

MP_CC_SCRATCH_BUFFER

MPI collectives normally pick from more than one algorithm based on the

Chapter 1. Performance Considerations for the MPI Library 9

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|

impact of message size, task count, and other factors on expected performance.

Normally, the algorithm that is predicted to be fastest is selected, but in some

cases the preferred algorithm depends on PE MPI allocation of scratch buffer

space. This environment variable instructs PE to use the collective

communication algorithm that takes less or even no scratch buffer space, even

if this algorithm is predicted to be slower. Most applications have no reason to

use this variable.

MP_RETRANSMIT_INTERVAL

This environment variable changes the frequency of checking for

unacknowledged packets. Lowering this value too much generates more switch

traffic and can lead to an increase in dropped packets. The packet statistics are

part of the end of job statistics displayed when MP_STATISTICS is set to

print.

MP_PRIORITY

This environment variable causes the invocation of the PE co-scheduler

function, if it is enabled by the system administrator. The value of this

environment variable is highly application dependent.

MP_TASK_AFFINITY

This environment variable applies to nodes that have more than one multi-chip

module (MCM) under control by AIX. It forces tasks to run exclusively on one

MCM, which allows them to take advantage of the memory local to that MCM.

This applies to IBM POWER4 and IBM POWER5 servers. For more information,

see Managing task affinity on large SMP nodes in IBM Parallel Environment for AIX

5L: Operation and Use, Volume 1.

10 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

Chapter 2. Profiling message passing

This chapter describes how to profile your program for message passing, including

the following topics:

v “AIX profiling.”

v “MPI nameshift profiling.”

AIX profiling

If you use the gprof, prof, or xprofiler command and the appropriate compiler

command (such as cc_r or mpcc_r) with the -p or -pg flag, you can profile your

program. For information about using:

v cc_r, gprof, and prof, see IBM Parallel Environment for AIX: Operation and Use,

Volume 2.

v mpcc_r and related compiler commands, see IBM Parallel Environment for AIX:

Operation and Use, Volume 1.

v xprofiler, which is part of the AIX operating system, see the AIX: Performance

Tools Guide and Reference.

The message passing library is not enabled for gprof or prof profiling counts. You

can obtain profiling information by using the nameshifted MPI functions provided.

MPI nameshift profiling

To use nameshift profiling routines that are either written to the C bindings with

an MPI program written in C, or that are written to the FORTRAN bindings with

an MPI program written in FORTRAN, follow the steps in “MPI Nameshift

profiling procedure.”

Programs that use the C MPI language bindings can easily create profiling libraries

using the nameshifted interface.

v If you are both the creator and user of the profiling library and you are not

using FORTRAN, follow steps 1 through 6. If you are using FORTRAN, follow

steps 1 through 4, then steps 7 through 14.

v If you are the creator of the profiling library, follow steps 1 through 4. You also

need to provide the user with the file created in step 2.

v If you are the user of the profiling library and you are not using FORTRAN,

follow steps 5 and 6. If you are using FORTRAN, start at step 7. You will need

to make sure that you have the file generated by the creator in step 2.

MPI Nameshift profiling procedure

To perform MPI nameshift profiling, follow the appropriate steps:

 1. Create a source file that contains profiling versions of all the MPI subroutines

you want to profile. For example, create a source file called myprof_r.c that

contains the following code:

#include <pthread.h>

#include <stdio.h>

#include <mpi.h>

int MPI_Init(int *argc, char ***argv) {

 int rc;

© Copyright IBM Corp. 1993, 2005 11

|
|

printf("hello from profiling layer MPI_Init...\n");

 rc = PMPI_Init(argc, argv);

 printf("goodbye from profiling layer MPI_Init...\n");

 return(rc);

}

 2. Create an export file that contains all of the symbols your profiling library will

export. Begin this file with the name of your profiling library and the name of

the .o file that will contain the object code of your profiling routines. For

example, create a file called myprof_r.exp that contains this statement:

MPI_Init

 3. Compile the source file that contains your profiling MPI routines. For

example:

cc_r -c myprof_r.c -I/usr/lpp/ppe.poe/include

The -I flag defines the location of mpi.h.

 4. Create a shared library called libmyprof_r.a that contains the profiled

versions, exporting their symbols and linking with the PE MPI library, using

myprof_r.exp as shown. For example:

ld -o newmyprof_r.o myprof_r.o -bM:SRE -H512 -T512 -bnoentry

 -bE:myprof_r.exp -lc -lmpi_r -L/usr/lpp/ppe.poe/lib -lpthreads

ar rv libmyprof_r.a newmyprof_r.o

 5. Link your user program:

mpcc_r -o test1 test1.c -L. -lmyprof_r

 6. Run the resulting executable.

 7. Programs that use the FORTRAN MPI language bindings need to do some

additional steps to use the profiling libraries created above. This is because the

FORTRAN bindings are contained in a separate shared object from the C

bindings.

The shipped product has a library structure that looks like this:

 +-------------------------+

 | libmpi_r.a(mpifort_r.o) | exports mpi_aaa

 +-------------------------+ imports MPI_Aaa

 |

 |

 |

 +-------------------------+

 | libmpi_r.a(mpicore_r.o) | exports MPI_Aaa

 +-------------------------+ exports PMPI_Aaa

You need to change it into the following structure by rebuilding the

mpifort_r.o shared object:

 +-----------------------------+

 | libpmpi_r.a(newmpifort_r.o) | exports mpi_aaa

 +-----------------------------+ imports MPI_Aaa

 |

 |

 |

 +------------------------------+ exports MPI_Aaa

 | libmyprof_r.a(newmyprof_r.o) | imports PMPI_Aaa

 +------------------------------+

 |

 |

 |

 +-------------------------+ exports PMPI_Aaa

 | libmpi_r.a(mpicore_r.o) | (exports MPI_Aaa)

 +-------------------------+

12 IBM PE for AIX 5L V4 R2: MPI Programming Guide

To do this, first extract mpifort_r.o from libmpi_r.a:

ar -xv /usr/lpp/ppe.poe/lib/libmpi_r.a mpifort_r.o

 8. Then, construct a script to rebuild mpifort_r.o, using the AIX rtl_enable

command:

rtl_enable -o newmpifort_r.o -s mpifort_r.o -L. -L/usr/lpp/ppe.poe/lib

 -lmyprof_r -lmpi_r -lc_r -lpthreads

 9. The rtl_enable command creates a script called mpifort_r.sh and import and

export files that reflect the original binding with libmpi_r.a(mpicore_r.o). To

break this binding and rebind, remove the reference to the import file:

sed "s/-bI:mpifort_r.imp//" < mpifort_r.sh > mpifort_r.newsh

10. Make mpifort_r.newsh executable and run it:

chmod +x mpifort_r.newsh

mpifort_r.newsh

11. Archive the new shared object:

ar rv libpmpi_r.a newmpifort_r.o

12. Create a program that uses an MPI function that you have profiled. For

example, a file called hwinit.f could contain these statements:

c -------------------------------------

 program hwinit

 include ’mpif.h’

 integer forterr

 c

 call MPI_INIT(forterr)

 c

 c Write comments to screen.

 c

 write(6,*)’Hello from task ’

 c

 call MPI_FINALIZE(forterr)

 c

 stop

 end

 c

13. Link your FORTRAN executable with the new library:

mpxlf_r -o hwinit hwinit.f -L. -lpmpi_r

14. Run the resulting executable.

Chapter 2. Profiling message passing 13

14 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 3. Using shared memory

This chapter addresses the use of shared memory and its performance

considerations, including the following topics:

v “Point-to-point communications.”

v “Collective communications.”

v “Shared memory performance considerations” on page 16.

v “Reclaiming shared memory” on page 16.

v “Using POE with multiple Ethernet adapters and shared memory” on page 16.

Point-to-point communications

MPI programs with more than one task on the same computing node may benefit

from using shared memory to send messages between same node tasks.

This support is controlled by the MP_SHARED_MEMORY environment variable.

The default setting is yes. In this case, shared memory is used for message passing.

Message passing between tasks on different nodes continues to use User Space or

IP protocol.

Setting this variable to no directs MPI to not use a shared-memory protocol for

message passing between any two tasks of a job running on the same node.

For the 32-bit libraries, shared memory exploitation always allocates a 256 MB

virtual memory address segment that is not available for any other use. Thus,

programs that are already using all available segments cannot use this option. For

more information, see “Available virtual memory segments” on page 34.

For 64-bit libraries, there are so many segments in the address space that there is

no conflict between library and end user segment use.

Shared memory support is available for both IP and User Space MPI protocols. For

programs on which all tasks are on the same node, shared memory is used

exclusively for all MPI communication (unless MP_SHARED_MEMORY is set to

no).

Collective communications

With PE Version 4, the PE implementation of MPI also offers an optimization of

certain collective communication routines. This optimization uses an additional

shared memory segment. The collective communication optimization is available

only to 64-bit executables, where segment registers are abundant. This optimization

is controlled by the MP_SHARED_MEMORY environment variable.

For collectives in 64-bit executables that are enhanced to use shared memory, the

algorithms used for smaller message sizes involve copying data from user buffers

to scratch buffers in shared memory, and then allowing tasks that are interested in

that data to work with the copy in shared memory. The algorithms used for larger

messages involve exposing the user buffer itself to other tasks that have an interest

in it. The effect is that for smaller messages, some tasks may return from a

© Copyright IBM Corp. 1993, 2005 15

|

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

collective call as soon as their data is copied to shared memory, sometimes before

tasks needing access to the data even enter the collective operation.

For larger messages, the algorithms are more strongly synchronizing, because a

task that directly exposes a user buffer to other tasks cannot return to the user

until the interested tasks have completed their access to the data.

Shared memory performance considerations

Be aware of these performance considerations:

1. The best performance is achieved when all message buffers are contiguous.

2. The large message support for some collectives involves exposing the memory

of one task to the address space of another task. There is a limit of 4096

concurrent operations of this kind on a node. There is also a limit of 32 GB for

the address range of a message that can use this technique.

If there are more than 4096 concurrent operations, or a buffer has an address

range greater than 32 GB, performance abnormalities may be encountered.

This applies only to 64-bit executables, as discussed in the previous section,

“Collective communications” on page 15.

3. A hang may occur if you match blocking and non-blocking collectives in the

same application. For a full description, see “Do not match blocking and

non-blocking collectives” on page 30.

4. 32-bit applications linked to use the maximum heap (8 segments) may not have

enough available segments to effectively use shared memory for large

messages. MPI will quietly use whatever resources are available, but

performance may be impacted.

Reclaiming shared memory

Occasionally, shared memory is not reclaimed. If this happens, you can use the

ipcrm command, or contact the system administrator to reclaim the shared

memory segments.

POE’s Partition Manager Daemon (PMD) attempts to clean up any allocated shared

memory segments when a program exits normally. However, if a PMD process

(named pmdv4) is killed with signals or with the llcancel command, shared

memory segments may not be cleaned up properly. For this reason, when shared

memory is used, users should not kill or cancel a PMD process.

Using POE with multiple Ethernet adapters and shared memory

The following method can be used to run a non-LoadLeveler POE job that uses

multiple Ethernet adapters and shared memory. If this method is not used for

these jobs, POE cannot correctly determine which tasks are running on the same

node, and shared memory key collisions will occur, resulting in unpredictable

behavior. This method consists of an extra poe invocation before running the real

POE job, and the use of a script that overrides an environment variable setting

before executing the parallel task.

1. With MP_PROCS set correctly in the environment (or with -procs set as part of

the poe invocation), run

poe hostname -stdoutmode ordered -ilevel 0 > hostnames

16 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

using the hostfile (either as host list in the directory where POE is run, or by

specifying MP_HOSTFILE or -hostfile) that contains the names of the Ethernet

adapters.

2. If a shared file system is not used, copy the original hostfile and the addr_fix

script below to the nodes where the parallel tasks will run. The addr_fix script

must be copied to the directory with the same name as the current directory on

the POE home node (from which you ran poe in step 1 on page 16.)

3. Run your real POE job with whatever settings you were using, except:

v Use the hostnames file from step 1 on page 16 as the MP_HOSTFILE or

-hostfile that is specified to POE.

v Set the environment variable ADDR_FIX_HOSTNAME to the name of the

hostfile that contains the names of the Ethernet adapters, used in step 1 on

page 16.

v Instead of invoking the job as:

poe my_exec my_args poe_flags

invoke it as:

poe ./addr_fix my_exec my_args poe_flags

The addr_fix script follows.

==

#!/bin/ksh93

Determine file index based on taskid

my_index=`expr $MP_CHILD + 1`

Index into the file to get the ethernet name that this task will run on.

my_name=`cat $ADDR_FIX_HOSTNAME | awk NR==$my_index’{print $0}’`

Convert my_name to a dot decimal address.

my_addr=`host $my_name | awk ’{print $3}’ | tr ’,’ ’ ’`

Set environment variable that MPI will use as address for IP communication

export MP_CHILD_INET_ADDR=@1:$my_addr,ip

Execute what was passed in

$*

==

This script assumes that striping is not used.

If LAPI is used, set MP_LAPI_INET_ADDR in the script instead. If both MPI and

LAPI are used, set both environment variables.

Chapter 3. Using shared memory 17

|
|
|
|

|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

18 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 4. Performing parallel I/O with MPI

This chapter describes how to preform parallel I/O with MPI, including the

following topics:

v “Definition of MPI-IO.”

v “Features of MPI-IO.”

v “Considerations for MPI-IO” on page 20.

v “MPI-IO API user tasks” on page 20.

v “MPI-IO file inter-operability” on page 24.

Definition of MPI-IO

The I/O component of MPI-2, or MPI-IO, provides a set of interfaces that are

aimed at performing portable and efficient parallel input and output operations.

MPI-IO allows a parallel program to express its I/O in a portable way that reflects

the program’s inherent parallelism. MPI-IO uses many of the concepts already

provided by MPI to express this parallelism. MPI datatypes are used to express the

layout and partitioning of data, which is represented in a file shared by several

tasks. An extension of the MPI communicator concept, referred to as an MPI_File,

is used to describe a set of tasks and a file that these tasks will use in some

integrated manner. Collective operations on an MPI_File allow efficient physical

I/O on a data structure that is distributed across several tasks for computation, but

possibly stored contiguously in the underlying file.

Features of MPI-IO

The primary features of MPI-IO are:

1. Portability: As part of MPI-2, programs written to use MPI-IO must be portable

across MPI-2 implementations and across hardware and software platforms.

The PE MPI-IO implementation guarantees portability of object code on

RS/6000 SP computers and clustered servers. The MPI-IO API ensures

portability at the source code level.

2. Versatility: The PE MPI-IO implementation provides support for:

v basic file manipulations (open, close, delete, sync)

v get and set file attributes (view, size, group, mode, info)

v blocking data access operations with explicit offsets (both independent and

collective)

v non-blocking data access operations with explicit offsets (independent only)

v blocking and non-blocking data access operations with file pointers

(individual and shared)

v split collective data access operations

v any derived datatype for memory and file mapping

v file inter-operability through data representations (internal, external,

user-defined)

v atomic mode for data accesses.
3. Robustness: PE MPI-IO performs as robustly as possible in the event of error

occurrences. Because the default behavior, as required by the MPI-2 standard, is

© Copyright IBM Corp. 1993, 2005 19

|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

for I/O errors to return, PE MPI-IO tries to prevent any deadlock that might

result from an I/O error returning. The intent of the ″errors return″ default is

that the type of errors considered almost routine in doing I/O should not be

fatal in MPI (for example, a ″file not found″ error).

However, deadlocks resulting from erroneous user codes cannot be entirely

avoided. Users of MPI-IO routines should always check return codes and be

prepared to terminate the job if the error is not one that the application can

recover from.

An application that fails in trying to create a file, fails every time it tries to

write, and fails again closing the file, will run to completion with no sign of a

problem, if return codes are not checked. The common practice of ignoring

return codes on MPI calls trusting MPI to trap the failure does not work with

MPI-IO calls.

Considerations for MPI-IO

MPI-IO will not operate if the MP_SINGLE_THREAD environment variable is set

to yes. A call to MPI_INIT with MP_SINGLE_THREAD set to yes is equivalent to

what might be expected with a call to MPI_INIT_THREAD specifying

MPI_THREAD_FUNNELED. A call with MP_SINGLE_THREAD set to no is

equivalent to using MPI_THREAD_MULTIPLE. The default setting of

MP_SINGLE_THREAD is no, therefore the default behavior of the threads library

is MPI_THREAD_MULTIPLE.

Note: In PE MPI, thread behavior is determined before calling MPI_INIT or

MPI_INIT_THREAD. A call to MPI_INIT_THREAD with

MPI_THREAD_FUNNELED will not actually mimic

MP_SINGLE_THREAD.

MPI-IO is intended to be used with the IBM General Parallel File System (GPFS)

for production use. File access through MPI-IO normally requires that a single

GPFS file system image be available across all tasks of an MPI job. Shared file

systems such as AFS® and NFS do not meet this requirement when used across

multiple nodes. PE MPI-IO can be used for program development on any other file

system that supports a POSIX interface (AFS, DFS™, JFS, or NFS) as long as all

tasks run on a single node or workstation, but this is not expected to be a useful

model for production use of MPI-IO.

In MPI-IO, whether an individual task performs I/O is not determined by whether

that task issues MPI-IO calls. By default, MPI-IO performs I/O through an agent at

each task of the job. I/O agents can be restricted to specific nodes by using an I/O

node file. This should be done any time there is not a single GPFS file system

available to all nodes on which tasks are to run. PE MPI-IO can be used without

all tasks having access to a single file system image by using the

MP_IONODEFILE environment variable. See IBM Parallel Environment for AIX:

Operation and Use, Volume 1 for information about MP_IONODEFILE.

MPI-IO API user tasks

This section explains the following MPI-IO user tasks:

v “Working with files” on page 21.

v “Error handling” on page 22.

v “Working with Info objects” on page 23.

v “Using datatype constructors” on page 24.

20 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|

|

|

|

|

|

v “Setting the size of the data buffer” on page 24.

Working with files

This section explains MPI-IO file management tasks.

Opening a file (MPI_FILE_OPEN)

When MPI-IO is used correctly, a file name will refer to the same file system at

every task of the job, not just at every task that issues the MPI_FILE_OPEN. In one

detectable error situation, a file will appear to be on different file system types. For

example, a particular file could be visible to some tasks as a GPFS file and to

others as NFS-mounted.

Use of a file that is local to (that is, distinct at) each task or node, is not valid and

cannot be detected as an error by MPI-IO. Issuing MPI_FILE_OPEN on a file in

/tmp may look valid to the MPI library, but will not produce valid results.

The default for MP_CSS_INTERRUPT is no. If you do not override the default,

MPI-IO enables interrupts while files are open. If you have forced interrupts to yes

or no, MPI-IO does not alter your selection.

MPI-IO depends on hidden threads that use MPI message passing. MPI-IO cannot

be used with MP_SINGLE_THREAD set to yes.

For AFS, DFS, and NFS, MPI-IO uses file locking for all accesses by default. If

other tasks on the same node share the file and also use file locking, file

consistency is preserved. If the MPI_FILE_OPEN is done with mode

MPI_MODE_UNIQUE_OPEN, file locking is not done.

For information about file hints, see MPI_FILE_OPEN in IBM Parallel Environment

for AIX: MPI Subroutine Reference.

Other file tasks

For information about the following file tasks, see IBM Parallel Environment for AIX:

MPI Subroutine Reference.

v Closing a file (MPI_FILE_CLOSE)

v Deleting a file (MPI_FILE_DELETE)

v Resizing a file (MPI_FILE_SET_SIZE)

v Preallocating space for a file (MPI_FILE_PREALLOCATE)

v Querying the size of a file (MPI_FILE_GET_SIZE)

v Querying file parameters (MPI_FILE_GET_AMODE, MPI_FILE_GET_GROUP)

v Querying and setting file information (MPI_FILE_GET_INFO,

MPI_FILE_SET_INFO)

v Querying and setting file views (MPI_FILE_GET_VIEW, MPI_FILE_SET_VIEW)

v Positioning (MPI_FILE_GET_BYTE_OFFSET, MPI_FILE_GET_POSITION)

v Synchronizing (MPI_FILE_SYNC)

v Accessing data

– Data access with explicit offsets:

- MPI_FILE_READ_AT

- MPI_FILE_READ_AT_ALL

- MPI_FILE_WRITE_AT

- MPI_FILE_WRITE_AT_ALL

Chapter 4. Performing parallel I/O with MPI 21

|

|
|

- MPI_FILE_IREAD_AT

- MPI_FILE_IWRITE_AT
– Data access with individual file pointers:

- MPI_FILE_READ

- MPI_FILE_READ_ALL

- MPI_FILE_WRITE

- MPI_FILE_WRITE_ALL

- MPI_FILE_IREAD

- MPI_FILE_IWRITE

- MPI_FILE_SEEK
– Data access with shared file pointers:

- MPI_FILE_READ_SHARED

- MPI_FILE_WRITE_SHARED

- MPI_FILE_IREAD_SHARED

- MPI_FILE_IWRITE_SHARED

- MPI_FILE_READ_ORDERED

- MPI_FILE_WRITE_ORDERED

- MPI_FILE_SEEK

- MPI_FILE_SEEK_SHARED
– Split collective data access:

- MPI_FILE_READ_AT_ALL_BEGIN

- MPI_FILE_READ_AT_ALL_END

- MPI_FILE_WRITE_AT_ALL_BEGIN

- MPI_FILE_WRITE_AT_ALL_END

- MPI_FILE_READ_ALL_BEGIN

- MPI_FILE_READ_ALL_END

- MPI_FILE_WRITE_ALL_BEGIN

- MPI_FILE_WRITE_ALL_END

- MPI_FILE_READ_ORDERED_BEGIN

- MPI_FILE_READ_ORDERED_END

- MPI_FILE_WRITE_ORDERED_BEGIN

- MPI_FILE_WRITE_ORDERED_END

Error handling

MPI-1 treated all errors as occurring in relation to some communicator. Many

MPI-1 functions were passed a specific communicator, and for the rest it was

assumed that the error context was MPI_COMM_WORLD. MPI-1 provided a

default error handler named MPI_ERRORS_ARE_FATAL for each communicator,

and defined functions similar to those listed below for defining and attaching

alternate error handlers.

The MPI-IO operations use an MPI_File in much the way other MPI operations use

an MPI_Comm, except that the default error handler for MPI-IO operations is

MPI_ERRORS_RETURN. The following functions are needed to allow error

handlers to be defined and attached to MPI_File objects:

v MPI_FILE_CREATE_ERRHANDLER

v MPI_FILE_SET_ERRHANDLER

22 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|

|

|

v MPI_FILE_GET_ERRHANDLER

v MPI_FILE_CALL_ERRHANDLER

For information about these subroutines, see IBM Parallel Environment for AIX: MPI

Subroutine Reference.

Logging I/O errors

Set the MP_IO_ERRLOG environment variable to yes to indicate whether to turn

on error logging for I/O operations. For example:

export MP_IO_ERRLOG=yes

turns on error logging. When an error occurs, a line of information will be logged

in file /tmp/mpi_io_errdump.app_name.userid.taskid, recording the time the error

occurs, the POSIX file system call involved, the file descriptor, and the returned

error number.

Working with Info objects

The MPI-2 standard provides the following Info functions as a means for a user to

construct a set of hints and pass these hints to some MPI-IO operations:

v MPI_INFO_CREATE

v MPI_INFO_DELETE

v MPI_INFO_DUP

v MPI_INFO_FREE

v MPI_INFO_GET

v MPI_INFO_GET_NKEYS

v MPI_INFO_GET_NTHKEY

v MPI_INFO_SET

v MPI_INFO_GET_VALUELEN

An Info object is an opaque object consisting of zero or more (key,value) pairs. Info

objects are the means by which users provide hints to the implementation about

things like the structure of the application or the type of expected file accesses. In

MPI-2, the APIs that use Info objects span MPI-IO, MPI one-sided, and dynamic

tasks. Both key and value are specified as strings, but the value may actually

represent an integer, boolean or other datatype. Some keys are reserved by MPI,

and others may be defined by the implementation. The implementation defined

keys should use a distinct prefix which other implementations would be expected

to avoid. All PE MPI hints begin with IBM_ (see MPI_FILE_OPEN in IBM Parallel

Environment for AIX: MPI Subroutine Reference). The MPI-2 requirement that hints,

valid or not, cannot change the semantics of a program limits the risks from

misunderstood hints.

By default, Info objects in PE MPI accept only PE MPI recognized keys. This allows

a program to identify whether a given key is understood. If the key is not

understood, an attempt to place it in an Info object will be ignored. An attempt to

retrieve the key will find no key/value present. The environment variable

MP_HINTS_FILTERED set to no will cause Info operations to accept arbitrary

(key, value) pairs. You will need to turn off hint filtering if your application, or

some non-MPI library it is using, depends on MPI Info objects to cache and

retrieve its own (key, value) pairs.

Chapter 4. Performing parallel I/O with MPI 23

|

|

|
|

|
|
|
|
|
|
|
|

Using datatype constructors

The following type constructors are provided as a means for MPI programs to

describe the data layout in a file and relate that layout to memory data which is

distributed across a set of tasks. The functions exist only for MPI-IO.

v MPI_TYPE_CREATE_DARRAY

v MPI_TYPE_CREATE_SUBARRAY

Setting the size of the data buffer

Set the MP_IO_BUFFER_SIZE environment variable to indicate the default size of

the data buffers used by the MPI-IO agents. For example:

export MP_IO_BUFFER_SIZE=16M

sets the default size of the MPI-IO data buffer to 16 MB. The default value of this

environment variable is the number of bytes corresponding to 16 file blocks. This

value depends on the block size associated with the file system storing the file.

Valid values are any positive size up to 128 MB. The size can be expressed as a

number of bytes, as a number of kilobytes (1024 bytes), using k or K as a suffix, or

as a number of megabytes (1024*1024 bytes), using m or M as a suffix. If necessary,

PE MPI rounds the size up, to correspond to an integral number of file system

blocks.

MPI-IO file inter-operability

For information about the following file inter-operability topics, see IBM Parallel

Environment for AIX: MPI Subroutine Reference and the MPI-2 Standard:

v Datatypes (MPI_FILE_GET_TYPE_EXTENT)

v External data representation (external32)

v User-defined data representations (MPI_REGISTER_DATAREP)

– Extent callback

– Datarep conversion functions
v Matching data representations

For information about the following topics, see the MPI-2 Standard:

v Consistency and semantics

– File consistency

– Random access versus sequential files

– Progress

– Collective file operations

– Type matching

– Miscellaneous clarifications

– MPI_Offset Type

– Logical versus physical file layout

– File size

– Examples: asynchronous I/O
v I/O error handling

v I/O error classes

v Examples: double buffering with split collective I/O, subarray filetype

constructor

24 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 5. Programming considerations for user applications

in POE

This chapter describes various limitations, restrictions, and programming

considerations for user applications written to run under the IBM Parallel

Environment for AIX (PE) licensed program, including these topics:

v “The MPI library.”

v “Parallel Operating Environment overview.”

v “POE user limits” on page 26.

v “Exit status” on page 26.

v “POE job step function” on page 27.

v “POE additions to the user executable” on page 27.

v “Threaded programming” on page 36.

v “Using MPI and LAPI in the same program” on page 43.

The MPI library

The MPI library uses hidden AIX kernel threads as well as the users’ threads to

move data into and out of message buffers. It supports MPI only, (not MPL, an

older IBM proprietary message passing library API), and supports message passing

on the main thread and on user-created threads. The MPI library includes support

for both 32-bit and 64-bit applications. The hidden threads also ensure that

message packets are acknowledged, and when necessary, retransmitted. User

applications, when compiled with the PE Version 4 compilation scripts (mpcc_r,

mpCC_r, mpxlf_r), will always be compiled with the threaded MPI library,

although the application itself may not be threaded.

The signal library has been removed

In PE Version 4, a single version of the message-passing library is provided.

Previous releases provided two versions: a threads library, and a signal-handling

library. PE Version 4 provides only a threaded version of the library, with binary

compatibility for the signal-handling library functions. In addition, PE Version 4

supports only MPI functions, in both 32-bit and 64-bit applications. MPL is no

longer supported.

In addition, the MPI library is using the Low-level communication API (LAPI)

protocol as a common transport layer. For more information on this and the use of

the LAPI protocol, see IBM Reliable Scalable Cluster Technology for AIX 5L: LAPI

Programming Guide.

Parallel Operating Environment overview

As the end user, you are encouraged to think of the Parallel Operating

Environment (POE) (also referred to as the poe command) as an ordinary (serial)

command. It accepts redirected I/O, can be run under the nice and time

commands, interprets command flags, and can be invoked in shell scripts.

An n-task parallel job running in POE consists of: the n user tasks, a number of

instances of the PE partition manager daemon (pmd) that is equal to the number

of nodes, and the POE home node task in which the poe command runs. The pmd

© Copyright IBM Corp. 1993, 2005 25

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

is the parent task of the user’s task. There is one pmd for each node. A pmd is

started by the POE home node on each machine on which a user task runs, and

serves as the point of contact between the home node and the users’ tasks.

The POE home node routes standard input, standard output, and standard error

streams between the home node and the users’ tasks with the pmd daemon, using

TCP/IP sockets for this purpose. The sockets are created when the POE home node

starts the pmd daemon for each task of a parallel job. The POE home node and

pmd also use the sockets to exchange control messages to provide task

synchronization, exit status and signaling. These capabilities do not depend on the

message passing library, and are available to control any parallel program run by

the poe command.

POE user limits

When interactive or batch POE applications are submitted under LoadLeveler, it is

possible to use the LoadLeveler class to define the user resource limits used for the

duration of the job. This also allows LoadLeveler to define and modify a different

set of user limits on the submit and compute nodes, using different LoadLeveler

job classes.

For interactive POE applications, without using LoadLeveler, POE does not copy or

replicate the user resource limits on the remote nodes where the parallel tasks are

to run (the compute nodes). POE uses the user limits as defined by the

/etc/security/limits file. If the user limits on the submitting node (home node) are

different than those on the compute nodes, POE does not change the user limits on

the compute nodes to match those on the submitting node.

Users should ensure that they have sufficient user resource limits on the compute

nodes, when submitting interactive parallel jobs. Users may want to coordinate

their user resource needs with their AIX system administrators to ensure that

proper user limits are in place, such as in the /etc/security/limits file on each node,

or by some other means.

Exit status

The exit status is any value from 0 through 255. This value, which is returned from

POE on the home node, reflects the composite exit status of your parallel

application as follows:

v If MPI_ABORT(comm,nn>0,ierror) or MPI_Abort(comm,nn>0) is called, the exit

status is nn (mod 256).

v If all tasks terminate using exit(MM>=0) or STOP MM>=0 and MM is not equal

to 1 and is less than 128 for all nodes, POE provides a synchronization barrier at

the exit. The exit status is the largest value of MM from any task of the parallel

job (mod 256).

v If any task terminates using exit(MM =1) or STOP MM =1, POE will

immediately terminate the parallel job, as if MPI_Abort(MPI_COMM_WORLD,1)

had been called. This may also occur if an error is detected within a FORTRAN

library because a common error response by FORTRAN libraries is to call STOP

1.

v If any task terminates with a signal (for example, a segment violation), the exit

status is the signal plus 128, and the entire job is immediately terminated.

v If POE terminates before the start of the user’s application, the exit status is 1.

26 IBM PE for AIX 5L V4 R2: MPI Programming Guide

v If the user’s application cannot be loaded or fails before the user’s main() is

called, the exit status is 255.

v You should explicitly call exit(MM) or STOP MM to set the desired exit code. A

program exiting without an explicit exit value returns unpredictable status, and

may result in premature termination of the parallel application and misleading

error messages. A well constructed MPI application should terminate with exit(0)

or STOP 0 sometime after calling MPI_FINALIZE.

POE job step function

The POE job step function is intended for the execution of a sequence of separate

yet interrelated dependent programs. Therefore, it provides you with a job control

mechanism that allows both job step progression and job step termination. The job

control mechanism is the program’s exit code.

v Job step progression:

POE continues the job step sequence if the task exit code is 0 or in the range of 2

through 127.

v Job-step termination:

POE terminates the parallel job, and does not run any remaining user programs

in the job step list if the task exit code is equal to 1 or greater than 127.

v Default termination:

Any POE infrastructure detected failure (such as failure to open pipes to the

child task, or an exec failure to start the user’s executable) terminates the parallel

job, and does not run any remaining user programs in the job step queue.

POE additions to the user executable

Legacy POE scripts mpcc, mpCC, and mpxlf are now symbolic links to mpcc_r,

mpCC_r, and mpxlf_r respectively. The old command names are still used in some

of the examples in this book.

POE links in the routines described in the sections that follow, when your

executable is compiled with any of the POE compilation scripts, such as: mpcc_r,

or mpxlf_r. These topics are discussed:

v “Signal handlers” on page 28.

v “Handling AIX signals” on page 28.

v “Do not hard code file descriptor numbers” on page 29.

v “Termination of a parallel job” on page 29.

v “Do not run your program as root” on page 30.

v “AIX function limitations” on page 30.

v “Shell execution” on page 30.

v “Do not rewind STDIN, STDOUT, or STDERR” on page 30.

v “Do not match blocking and non-blocking collectives” on page 30.

v “Passing string arguments to your program correctly” on page 31.

v “POE argument limits” on page 31.

v “Network tuning considerations” on page 31.

v “Standard I/O requires special attention” on page 32.

v “Reserved environment variables” on page 33.

v “AIX message catalog considerations” on page 33.

Chapter 5. Programming considerations for user applications in POE 27

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v “Language bindings” on page 33.

v “Available virtual memory segments” on page 34.

v “Using a switch clock as a time source” on page 34.

v “Running applications with large numbers of tasks” on page 35.

v “Running POE with MALLOCDEBUG” on page 35.

Signal handlers

POE installs signal handlers for most signals that cause program termination, so

that it can notify the other tasks of termination. POE then causes the program to

exit normally with a code of (signal plus 128). This section includes information

about installing your own signal handler for synchronous signals.

Note: For information about the way POE handles asynchronous signals, see

“Handling AIX signals.”

For synchronous signals, you can install your own signal handlers by using the

sigaction() system call. If you use sigaction(), you can use either the sa_handler

member or the sa_sigaction member in the sigaction structure to define the signal

handling function. If you use the sa_sigaction member, the SA_SIGINFO flag must

be set.

For the following signals, POE installs signal handlers that use the sa_sigaction

format:

v SIGABRT

v SIGBUS

v SIGEMT

v SIGFPE

v SIGILL

v SIGSEGV

v SIGSYS

v SIGTRAP

POE catches these signals, performs some cleanup, installs the default signal

handler (or lightweight core file generation), and re-raises the signal, which will

terminate the task.

Users can install their own signal handlers, but they should save the address of the

POE signal handler, using a call to SIGACTION. If the user program decides to

terminate, it should call the POE signal handler as follows:

saved.sa_flags =SA_SIGINFO;

(*saved.sa_sigaction)(signo,NULL,NULL)

If the user program decides not to terminate, it should just return to the

interrupted code.

Note: Do not issue message passing calls, including MPI_ABORT, from signal

handlers. Also, many library calls are not “signal safe”, and should not be

issued from signal handlers. See function sigaction() in the AIX Technical

Reference for a list of functions that signal handlers can call.

Handling AIX signals

The POE runtime environment creates a thread to handle the following

asynchronous signals by performing a sigwait on them:

v SIGDANGER

28 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

|

|

|

|

v SIGHUP

v SIGINT

v SIGPWR

v SIGQUIT

v SIGTERM

These handlers perform cleanup and exit with a code of (signal plus 128). You can

install your own signal handler for any or all of these signals. If you want the

application to exit after you catch the signal, call the function

pm_child_sig_handler(signal,NULL,NULL). The prototype for this function is in

file usr/lpp/ppe.poe/include/pm_util.h.

The following asynchronous signals are handled as described below.

SIGALRM

Unlike the now retired signal library, the threads library does not use SIGALRM,

and long system calls are not interrupted by the message passing library. For

example, sleep runs its entire duration unless interrupted by a user-generated

event.

SIGIO

Unlike PE 3.2, SIGIO is not used by the MPI library. A user-written signal handler

will not be called when an MPI packet arrives. The user may use SIGIO for other

I/O attention purposes, as required.

SIGPIPE

Some usage environments of the now retired signal library depended on MPI use

of SIGPIPE. There is no longer any use of SIGPIPE by the MPI library.

Do not hard code file descriptor numbers

Do not use hard coded file descriptor numbers beyond those specified by STDIN,

STDOUT and STDERR.

POE opens several files and uses file descriptors as message passing handles.

These are allocated before the user gets control, so the first file descriptor allocated

to a user is unpredictable.

Termination of a parallel job

POE provides for orderly termination of a parallel job, so that all tasks terminate at

the same time. This is accomplished in the atexit routine registered at program

initialization. For normal exits (codes 0, and 2 through 127), the atexit routine

sends a control message to the POE home node, and waits for a positive response.

For abnormal exits and those that do not go through the atexit routine, the pmd

daemon catches the exit code and sends a control message to the POE home node.

For normal exits, when POE gets a control message for every task, it responds to

each node, allowing that node to exit normally with its individual exit code. The

pmd daemon monitors the exit code and passes it back to the POE home node for

presentation to the user.

For abnormal exits and those detected by pmd, POE sends a message to each pmd

asking that it send a SIGTERM signal to its tasks, thereby terminating the task.

When the task finally exits, pmd sends its exit code back to the POE home node

and exits itself.

Chapter 5. Programming considerations for user applications in POE 29

User-initiated termination of the POE home node with SIGINT <Ctrl-c> or

SIGQUIT <Ctrl-\> causes a message to be sent to pmd asking that the appropriate

signal be sent to the parallel task. Again, pmd waits for the tasks to exit, then

terminates itself.

Do not run your program as root

To prevent uncontrolled root access to the entire parallel job computation resource,

POE checks to see that the user is not root as part of its authentication.

AIX function limitations

Use of the following AIX function may be limited:

v getuinfo does not show terminal information, because the user program running

in the parallel partition does not have an attached terminal.

Shell execution

The program executed by POE on the parallel nodes does not run under a shell on

those nodes. Redirection and piping of STDIN, STDOUT, and STDERR applies to

the POE home node (POE binary), and not the user’s code. If shell processing of a

command line is desired on the remote nodes, invoke a shell script on the remote

nodes to provide the desired preprocessing before the user’s application is

invoked.

You can have POE run a shell script that is loaded and run on the remote nodes as

if it were a binary file.

Due to an AIX limitation, if the program being run by POE is a shell script and

there are more than five tasks being run per node, the script must be run under

ksh93 by using:

#!/bin/ksh93

on the first line of the script.

If the POE home node task is not started under the Korn shell, mounted file

system names may not be mapped correctly to the names defined for the

automount daemon or AIX equivalent. See the IBM Parallel Environment for AIX:

Operation and Use, Volume 1 for a discussion of alternative name mapping

techniques.

Do not rewind STDIN, STDOUT, or STDERR

The partition manager daemon (pmd) uses pipes to direct STDIN, STDOUT and

STDERR to the user’s program. Therefore, do not rewind these files.

Do not match blocking and non-blocking collectives

The future use of MPE_I non-blocking collectives is deprecated, but only 64-bit

executables are affected by this limitation in PE Version 4.

Earlier versions of PE/MPI allowed matching of blocking (MPI) with non-blocking

(MPE_I) collectives. With PE Version 4, it is advised that you do not match

blocking and non-blocking collectives in the same collective operation. If you do, a

hang situation can occur. It is possible that some existing applications may hang,

when run using PE Version 4. In the case of an unexpected hang, turn on

DEVELOP mode by setting the environment variable MP_EUIDEVELOP to yes,

and rerun your application. DEVELOP mode will detect and report any mismatch.

30 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

|

|
|
|
|
|
|

|
|

|
|
|

|

|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|

If DEVELOP mode identifies a mismatch, you may continue to use the application

as is, by setting MP_SHARED_MEMORY to no. If possible, alter the application to

remove the matching of non-blocking with blocking collectives.

Passing string arguments to your program correctly

Quotation marks, either single or double, used as argument delimiters are stripped

away by the shell and are never seen by poe. Therefore, the quotation marks must

be escaped to allow the quoted string to be passed correctly to the remote tasks as

one argument. For example, if you want to pass the following string to the user

program (including the embedded blank)

a b

you need to enter the following:

poe user_program \"a b\"

user_program is passed the following argument as one token:

a b

Without the backslashes, the string would have been treated as two arguments (a

and b).

POE behaves like rsh when arguments are passed to POE. Therefore, this

command:

poe user_program "a b"

is equivalent to:

rsh some_machine user_program "a b"

In order to pass the string argument as one token, the quotation marks have to be

escaped using the backslash.

POE argument limits

The maximum length for POE program arguments is 24576 bytes. This is a fixed

limit and cannot be changed. If this limit is exceeded, an error message is

displayed and POE terminates. The length of the remote program arguments that

can be passed on POE’s command line is 24576 bytes minus the number of bytes

that are used for POE arguments.

Network tuning considerations

Programs generating large volumes of STDOUT or STDERR may overload the

home node. As described previously, STDOUT and STDERR files generated by a

user’s program are piped to pmd, then forwarded to the POE binary using a

TCP/IP socket. It is possible to generate so much data that the IP message buffers

on the home node are exhausted, the POE binary hangs, and possibly the entire

node hangs. Note that the option -stdoutmode (environment variable

MP_STDOUTMODE) controls which output stream is displayed by the POE

binary, but does not limit the standard output traffic received from the remote

nodes, even when set to display the output of only one node.

The POE environment variable MP_SNDBUF can be used to override the default

network settings for the size of the TCP/IP buffers used.

Chapter 5. Programming considerations for user applications in POE 31

|
|
|

|

If you have large volumes of standard input or output, work with your network

administrator to establish appropriate TCP/IP tuning parameters. You may also

want to investigate whether using named pipes is appropriate for your application.

Standard I/O requires special attention

When your program runs on the remote nodes, it has no controlling terminal.

STDIN, STDOUT, and STDERR are always piped.

Running the poe command (or starting a program compiled with one of the POE

compile scripts) causes POE to perform this sequence of events:

1. The POE binary is loaded on the machine on which you submitted the

command (the POE home node).

2. The POE binary, in turn, starts a partition manager daemon (pmd) on each

parallel node assigned to run the job, and tells that pmd to run one or more

copies of your executable (using fork and exec).

3. The POE binary reads STDIN and passes it to each pmd with a TCP/IP socket

connection.

4. The pmd on each node pipes STDIN to the parallel tasks on that node.

5. STDOUT and STDERR from the tasks are piped to the pmd daemon.

6. This output is sent by the pmd on the TCP/IP socket back to the home node

POE.

7. This output is written to the POE binary’s STDOUT and STDERR descriptors.

Programs that depend on piping standard input or standard output as part of a

processing sequence may wish to bypass the home node POE binary. If you know

that the task reading STDIN or writing STDOUT must be on the same node

(processor) as the POE binary (the POE home node), named pipes can be used to

bypass POE’s reading and forwarding STDIN and STDOUT.

If your MPI program processes STDIN from a large file on the home node, you

must do one of the following:

v Invoke MPI_INIT before performing any STDIN processing.

v Ensure that all STDIN has been processed (EOF) before invoking MPI_INIT (or if

LAPI is being used in the application, LAPI_INIT).

If STDIN is piped (or redirected) to the POE binary (with ordinary pipes), handle

STDIN in the following way:

v If all of STDIN is read by your program before MPI_INIT is called, set the

environment variable MP_HOLD_STDIN to NO.

v If none of STDIN is read before MPI_INIT is called, set the environment variable

MP_HOLD_STDIN to YES.

v If STDIN is less than approximately 4000 bytes in length, set

MP_HOLD_STDIN to NO.

v If none of the above applies, it may not be possible to run your program

correctly, and you will have to devise some other mechanism for providing data

to your program.

STDIN and STDOUT piping example

The following two scripts show how STDIN and STDOUT can be piped directly

between preprocessing and postprocessing steps, bypassing the POE home node

task. This example assumes that parallel task 0 is known or forced to be on the

same node as the POE home node.

32 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

|
|

|
|

|
|

|
|
|

|
|

|

|

|
|

|

|
|
|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

The script compute_home runs on the home node; the script compute_parallel

runs on the parallel nodes (those running tasks 0 through n-1).

compute_home:

#! /bin/ksh93

Example script compute_home runs three tasks:

data_generator creates/gets data and writes to stdout

data_processor is a parallel program that reads data

from stdin, processes it in parallel, and writes

the results to stdout.

data_consumer reads data from stdin and summarizes it

mkfifo poe_in_$$

mkfifo poe_out_$$

export MP_STDOUTMODE=0

export MP_STDINMODE=0

data_generator >poe_in_$$ |

 poe compute_parallel poe_in_$$ poe_out_$$ data_processor |

 data_consumer <poe_out_$$

 rc=$?

 rm poe_in_$$

 rm poe_out_$$

 exit rc

compute_parallel:

#! /bin/ksh93

Example script compute_parallel is a shell script that

takes the following arguments:

1) name of input named pipe (stdin)

2) name of output named pipe (stdout)

3) name of program to be run (and arguments)

poe_in=$1

poe_out=$2

shift 2

$* <$poe_in >$poe_out

Reserved environment variables

Environment variables whose name begins with MP_ are intended for use by POE,

and should be set only as instructed in the documentation. POE also uses a

handful of MP_ environment variables for internal purposes, which should not be

interfered with.

If the value of MP_INFOLEVEL is greater than or equal to 1, POE will display any

MP_ environment variables that it does not recognize, but POE will continue

working normally.

AIX message catalog considerations

POE assumes that the environment variable NLSPATH contains the appropriate

POE message catalogs, even if environment variable LANG is set to C or is not set.

Duplicate message catalogs are provided for languages En_US, en_US, and C.

Language bindings

The FORTRAN, C, and C++ bindings for MPI are contained in the same library

and can be freely intermixed. The library is named libmpi_r.a. Because it contains

both 32-bit and 64-bit objects, and the compiler and linker select between them,

libmpi_r.a can be used for both 32-bit and 64-bit applications.

The AIX compilers support the flag -qarch. This option allows you to target code

generation for your application to a particular processor architecture. While this

option can provide performance enhancements on specific platforms, it inhibits

Chapter 5. Programming considerations for user applications in POE 33

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

portability. The MPI library is not targeted to a specific architecture, and is not

affected by the flag -qarch on your compilation.

The MPI standard includes several routines that take choice arguments. For

example MPI_SEND may be passed a buffer of REAL on one call, and a buffer of

INTEGER on the next. The -qextcheck compiler option flags this as an error. In

F77, choice arguments are a violation of the FORTRAN standard that few compilers

would complain about. In F90, choice arguments can be interpreted by the compiler

as an attempt to use function overloading. MPI FORTRAN functions do not require

genuine overloading support to give correct results and PE MPI does not define

overloaded functions for all potential choice arguments. Because -qextcheck

considers use of choice arguments to be erroneous overloads even though the code

is correct MPI, the -qextcheck option should not be used.

Available virtual memory segments

A 32-bit application is limited to 16 segments. The AIX memory model for 32-bit

applications claims five of these. The application can allocate up to eight segments

(2 GB) for application data (the heap, specified with compile option -bmaxdata).

The communication subsystem takes a variable number of segments, depending on

options chosen at run time. In some circumstances, for 32-bit applications the total

demand for segments can be greater than 16 and a job will be unable to start or

will run with reduced performance. If your application is using a very large heap

and you consider enabling striping, see the migration section in IBM Parallel

Environment for AIX 5L: Operation and Use, Volume 1 for details.

Using a switch clock as a time source

The high performance switch interconnects that supports user space also provide a

globally-synchronized counter that can be used as a source for the MPI_WTIME

function, provided that all tasks are run on nodes connected to the same switch

interconnect. The environment variable MP_CLOCK_SOURCE provides additional

control.

Table 3 on page 35 shows how the clock source is determined. PE MPI guarantees

that the MPI attribute MPI_WTIME_IS_GLOBAL has the same value at every task,

and all tasks use the same clock source (AIX or switch).

34 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

Table 3. How the clock source is determined

MP_CLOCK

_SOURCE

Library

version

Are all nodes on

the same switch?

Source

used

MPI_WTIME

_IS_GLOBAL

AIX ip yes AIX false

AIX ip no AIX false

AIX us yes AIX false

AIX us no Error false

SWITCH ip yes* switch true

SWITCH ip no AIX false

SWITCH us yes switch true

SWITCH us no Error

not set ip yes switch false

not set ip no AIX false

not set us yes switch true

not set us no Error

Note: * If MPI_WTIME_IS_GLOBAL value is to be trusted, the user is responsible for

making sure all of the nodes are connected to the same switch. If the job is in IP mode and

MP_CLOCK_SOURCE is left to default, MPI_WTIME_IS_GLOBAL will report false even

if the switch is used because MPI cannot know it is the same switch.

In this table, ip refers to IP protocol, us refers to User Space protocol.

Running applications with large numbers of tasks

If you plan to run your parallel applications with a large number of tasks (more

than 256), the following tips may improve stability and performance:

v To control the amount of memory made available for early arrival buffering, the

environment variable MP_BUFFER_MEM or command-ling flag -buffer_mem

can accept the format M1, M2 where each of M1, M2 is a memory specification

suffixed with K, M, or G.

M1 specifies the amount of pre-allocated memory. M2 specifies the maximum

memory that might be requested by the program. See the entry for

MP_BUFFER_MEM in Chapter 11, “POE environment variables and

command-line flags,” on page 69 and Appendix E, “PE MPI buffer management

for eager protocol,” on page 217 for details.

v When using IP mode, use a host list file with the switch IP names, instead of the

IP host name.

v In 32-bit applications, you may avoid the problem of running out of memory by

linking applications with an extended heap starting with data segment 3. For

example, specifying the -bD:0x30000000 loader option causes segments 3, 4, and

5 to be allocated to the heap. The default is to share data segment 2 between the

stack and the heap.

For limitations on the number of tasks, tasks per node, and other restrictions, see

Chapter 10, “MPI size limits,” on page 65.

Running POE with MALLOCDEBUG

Running a POE job that uses MALLOCDEBUG with an align:n option of other

than 8 may result in undefined behavior. To allow the parallel program being run

Chapter 5. Programming considerations for user applications in POE 35

||

|
|
|
|
|
|
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|

by POE (myprog, for example) to run with an align:n option of other than 8, create

the following script (called myprog.sh), for example:

MALLOCTYPE=debug

MALLOCDEBUG=align:0

myprog myprog_options

and then run with this command:

poe myprog.sh poe_options

instead of this command:

poe myprog poe_options myprog_options

Threaded programming

When programming in a threads environment, specific skills and considerations

are required. The information in this subsection provides you with specific

programming considerations when using POE and the MPI library. This section

assumes that you are familiar with POSIX threads in general, including multiple

execution threads, thread condition waiting, thread-specific storage, thread creation

and thread termination. These topics are discussed:

v “Running single threaded applications.”

v “POE gets control first and handles task initialization” on page 37.

v “Limitations in setting the thread stack size” on page 37.

v “Forks are limited” on page 37.

v “Thread-safe libraries” on page 37.

v “Program and thread termination” on page 37.

v “Order requirement for system includes” on page 38.

v “Using MPI_INIT or MPI_INIT_THREAD” on page 38.

v “Collective communication calls” on page 38.

v “Support for M:N threads” on page 38.

v “Checkpoint and restart limitations” on page 39.

v “64-bit application considerations” on page 42.

v “MPI_WAIT_MODE: the nopoll option” on page 43.

v “Mixed parallelism with MPI and threads” on page 43.

Running single threaded applications

As mentioned earlier, PE Version 4 provides only the threaded version of the MPI

library and program compiler scripts.

Applications that do not intend to use threads can continue to run as single

threaded programs, despite the fact they are now compiled as threaded programs.

However there are some side issues application developers should be aware of.

Any application that was compiled with the signal library compiler scripts prior to

PE Version 4 and not using MPE_I non-blocking collectives, is in this class.

Application performance may be impacted by locking overheads in the threaded

MPI library. Users with applications that do not create additional threads and do

not use the nonstandard MPE_I nonblocking collectives, MPI-IO, or MPI one-sided

communication may wish to set the environment variable MP_SINGLE_THREAD

to yes for a possible performance improvement.

36 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|
|
|
|
|

Do not set MP_SINGLE_THREAD to yes unless you are certain that the

application is single threaded. Setting MP_SINGLE_THREAD to yes, and then

creating additional user threads will give unpredictable results. Calling

MPI_FILE_OPEN, MPI_WIN_CREATE or any MPE_I nonblocking collective in an

application running with MP_SINGLE_THREAD set to yes will cause PE MPI to

terminate the job.

Also, applications that register signal handlers may need to be aware that the

execution is in a threaded environment.

POE gets control first and handles task initialization

POE sets up its environment using the poe_remote_main entry point. The

poe_remote_main entry point sets up signal handlers, initializes a thread for

handling asynchronous communication, and sets up an atexit routine before your

main program is invoked. MPI communication is established when you call

MPI_INIT in your application, and not during poe_remote_main.

Limitations in setting the thread stack size

The main thread stack size is the same as the stack size used for non-threaded

applications. Library-created service threads use a default stack size of 8K for

32-bit applications and 16K for 64-bit applications. The default value is specified by

the variable PTHREAD_STACK_MIN, which is defined in header file

/usr/include/limits.h.

If you write your own MPI reduction functions to use with nonblocking collective

communications, these functions may run on a service thread. If your reduction

functions require significant amounts of stack space, you can use the

MP_THREAD_STACKSIZE environment variable to cause larger stacks to be

created for service threads. This does not affect the default stack size for any

threads you create.

Forks are limited

If a task forks, only the thread that forked exists in the child task. Therefore, the

message passing library will not operate properly. Also, if the forked child does

not exec another program, it should be aware that an atexit routine has been

registered for the parent that is also inherited by the child. In most cases, the atexit

routine requests that POE terminate the task (parent). A forked child should

terminate with an _exit(0) system call to prevent the atexit routine from being

called. Also, if the forked parent terminates before the child, the child task will not

be cleaned up by POE.

Note: A forked child must not call the message passing library (MPI library).

Thread-safe libraries

Most AIX libraries are thread-safe, such as libc.a. However, not all libraries have a

thread-safe version. It is your responsibility to determine whether the AIX libraries

you use can be safely called by more than one thread.

Program and thread termination

MPI_FINALIZE terminates the MPI service threads but does not affect user-created

threads. Use pthread_exit to terminate any user-created threads, and exit(m) to

terminate the main program (initial thread). The value of m is used to set POE’s

Chapter 5. Programming considerations for user applications in POE 37

|
|
|
|
|
|

|

exit status as explained in “Exit status” on page 26. For programs that are

successful, the value for m should be zero.

Order requirement for system includes

For programs that explicitly use threads, AIX requires that the system include file

pthread.h must be first, with stdio.h or other system includes following it.

pthread.h defines some conditional compile variables that modify the code

generation of subsequent includes, particularly stdio.h. Note that pthread.h is not

required unless your program uses thread-related calls or data.

Using MPI_INIT or MPI_INIT_THREAD

Call MPI_INIT once per task, not once per thread. MPI_INIT does not have to be

called on the main thread, but MPI_INIT and MPI_FINALIZE must be called on

the same thread.

MPI calls on other threads must adhere to the MPI standard in regard to the

following:

v A thread cannot make MPI calls until MPI_INIT has been called.

v A thread cannot make MPI calls after MPI_FINALIZE has been called.

v Unless there is a specific thread synchronization protocol provided by the

application itself, you cannot rely on any specific order or speed of thread

processing.

The MPI_INIT_THREAD call allows the user to request a level of thread support

ranging from MPI_THREAD_SINGLE to MPI_THREAD_MULTIPLE. PE MPI

ignores the request argument. If MP_SINGLE_THREAD is set to yes, MPI runs in

a mode equivalent to MPI_THREAD_FUNNELED. IF MP_SINGLE_THREAD is

set to no, or allowed to default, PE MPI runs in MPI_THREAD_MULTIPLE mode.

The nonstandard MPE_I nonblocking collectives, MPI-IO, and MPI one-sided

communication will not operate if MP_SINGLE_THREAD is set to yes.

Collective communication calls

Collective communication calls must meet the MPI standard requirement that all

participating tasks execute collective communication calls on any given

communicator in the same order. If collective communications call are made on

multiple threads, it is your responsibility to ensure the proper sequencing. The

preferred approach is for each thread to use a distinct communicator.

Support for M:N threads

By default, AIX causes thread creation to use process scope. POE overrides this

default by setting the environment variable AIXTHREAD_SCOPE to S, which has

the effect that all user threads are created with system contention scope, with each

user thread mapped to a kernel thread. If you explicitly set AIXTHREAD_SCOPE

to P, to be able to create to your user threads with process contention scope, POE

will not override your setting. In process scope, M number of user threads are

mapped to N number of kernel threads. The values of the ratio M:N can be set by

an AIX environment variable.

The service threads created by MPI, POE, and LAPI have system contention scope,

that is, they are mapped 1:1 to kernel threads.

38 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|

Any user-created thread that began with process contention scope, will be

converted to system contention scope when it makes its first MPI call. Threads that

must remain in process contention scope should not make MPI calls.

Checkpoint and restart limitations

Use of the checkpoint and restart function has these limitations:

v “Programs that cannot be checkpointed.”

v “Program restrictions.”

v “AIX function restrictions” on page 40.

v “Node restrictions” on page 40.

v “Task-related restrictions” on page 41.

v “Pthread and atomic lock restrictions” on page 41.

v “Other restrictions” on page 41.

Programs that cannot be checkpointed

The following programs cannot be checkpointed:

v Programs that do not have the environment variable CHECKPOINT set to yes.

v Programs that are being run under:

– The dynamic probe class library (DPCL).

– Any debugger that is not checkpoint/restart–capable.
v Processes that use:

– Extended shmat support

– Pinned shared memory segments
v Sets of processes in which any process is running a setuid program when a

checkpoint occurs.

v Jobs for which POE input or output is a pipe.

v Jobs for which POE input or output is redirected, unless the job is submitted

from a shell that had the CHECKPOINT environment variable set to yes before

the shell was started. If POE is run from inside a shell script and is run in the

background, the script must be started from a shell started in the same manner

for the job to be able to be checkpointed.

v Jobs that are run using the switch or network table sample programs.

v Interactive POE jobs for which the su command was used prior to checkpointing

or restarting the job.

Program restrictions

Any program that meets both these criteria:

v is compiled with one of the threaded compile scripts provided by PE

v may be checkpointed prior to its main() function being invoked

must wait for the 0031-114 message to appear in POE’s STDERR before issuing the

checkpoint of the parallel job. Otherwise, a subsequent restart of the job may fail.

Note: The MP_INFOLEVEL environment variable, or the -infolevel command-line

option, must be set to a value of at least 2 for this message to appear.

Any program that meets both these criteria:

v is compiled with one of the threaded compile scripts provided by PE

v may be checkpointed immediately after the parallel job is restarted

Chapter 5. Programming considerations for user applications in POE 39

|

|

|

|

|

|

|

|

must wait for the 0031-117 message to appear in POE’s STDERR before issuing the

checkpoint of the restarted job. Otherwise, the checkpoint of the job may fail.

Note: The MP_INFOLEVEL environment variable, or the -infolevel command line

option, must be set to a value of at least 2 for this message to appear.

AIX function restrictions

The following AIX functions will fail, with an errno of ENOTSUP, if the

CHECKPOINT environment variable is set to yes in the environment of the calling

program:

 clock_getcpuclockid()

 clock_getres()

 clock_gettime()

 clock_nanosleep()

 clock_settime()

 mlock()

 mlockall()

 mq_close()

 mq_getattr()

 mq_notify()

 mq_open()

 mq_receive()

 mq_send()

 mq_setattr()

 mq_timedreceive()

 mq_timedsend()

 mq_unlink()

 munlock()

 munlockall()

 nanosleep()

 pthread_barrierattr_init()

 pthread_barrierattr_destroy()

 pthread_barrierattr_getpshared()

 pthread_barrierattr_setpshared()

 pthread_barrier_destroy()

 pthread_barrier_init()

 pthread_barrier_wait()

 pthread_condattr_getclock()

 pthread_condattr_setclock()

 pthread_getcpuclockid()

 pthread_mutexattr_getprioceiling()

 pthread_mutexattr_getprotocol()

 pthread_mutexattr_setprioceiling()

 pthread_mutexattr_setprotocol()

 pthread_mutex_getprioceiling()

 pthread_mutex_setprioceiling()

 pthread_mutex_timedlock()

 pthread_rwlock_timedrdlock()

 pthread_rwlock_timedwrlock()

 pthread_setschedprio()

 pthread_spin_destroy()

 pthread_spin_init()

 pthread_spin_lock()

 pthread_spin_trylock()

 pthread_spin_unlock()

 sched_getparam()

 sched_get_priority_max()

 sched_get_priority_min()

 sched_getscheduler()

 sched_rr_get_interval()

 sched_setparam()

 sched_setscheduler()

 sem_close()

 sem_destroy()

 sem_getvalue()

 sem_init()

 sem_open()

 sem_post()

 sem_timedwait()

 sem_trywait()

 sem_unlink()

 sem_wait()

 shm_open()

 shm_unlink()

 timer_create()

 timer_delete()

 timer_getoverrun()

 timer_gettime()

 timer_settime()

Node restrictions

The node on which a process is restarted must have:

v The same operating system level (including PTFs). In addition, a restarted

process may not load a module that requires a system call from a kernel

extension that was not present at checkpoint time.

v The same switch type as the node where the checkpoint occurred.

If any threads in the parallel task were bound to a specific processor ID at

checkpoint time, that processor ID must exist on the node where that task is

restarted.

40 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Task-related restrictions

v The number of tasks and the task geometry (the tasks that are common within a

node) must be the same on a restart as it was when the job was checkpointed.

v Any regular file open in a parallel task when that task is checkpointed must be

present on the node where that task is restarted, including the executable and

any dynamically loaded libraries or objects.

v If any task within a parallel application uses sockets or pipes, user callbacks

should be registered to save data that may be in transit when a checkpoint

occurs, and to restore the data when the task is resumed after a checkpoint or

restart. Similarly, any user shared memory should be saved and restored.

Pthread and atomic lock restrictions

v A checkpoint operation will not begin on a parallel task until each user thread in

that task has released all pthread locks, if held.

This can potentially cause a significant delay from the time a checkpoint is

issued until the checkpoint actually occurs. Also, any thread of a process that is

being checkpointed that does not hold any pthread locks and tries to acquire one

will be stopped immediately. There are no similar actions performed for atomic

locks (_check_lock and _clear_lock, for example).

v Atomic locks must be used in such a way that they do not prevent the releasing

of pthread locks during a checkpoint.

For example, if a checkpoint occurs and thread 1 holds a pthread lock and is

waiting for an atomic lock, and thread 2 tries to acquire a different pthread lock

(and does not hold any other pthread locks) before releasing the atomic lock that

thread 1 is waiting for, the checkpoint will hang.

v If a pthread lock is held when a parallel task creates a new process (either

implicitly using popen, for example, or explicitly using fork or exec) and the

releasing of the lock is contingent on some action of the new process, the

CHECKPOINT environment variable must be set to no before causing the new

process to be created.

Otherwise, the parent process may be checkpointed (but not yet stopped) before

the creation of the new process, which would result in the new process being

checkpointed and stopped immediately.

v A parallel task must not hold a pthread lock when creating a new process (either

implicitly using popen for example, or explicitly using fork) if the releasing of

the lock is contingent on some action of the new process.

Otherwise a checkpoint could occur that would cause the child process to be

stopped before the parent could release the pthread lock causing the checkpoint

operation to hang.

v The checkpoint operation may hang if any user pthread locks are held across:

– Any collective communication calls in MPI (or if LAPI is being used in the

application, LAPI).

– Calls to mpc_init_ckpt or mp_init_ckpt.

– Any blocking MPI call that returns only after action on some other task.

Other restrictions

v Processes cannot be profiled at the time a checkpoint is taken.

v There can be no devices other than TTYs or /dev/null open at the time a

checkpoint is taken.

v Open files must either have an absolute pathname that is less than or equal to

PATHMAX in length, or must have a relative pathname that is less than or equal

Chapter 5. Programming considerations for user applications in POE 41

|
|
|
|

|
|

to PATHMAX in length from the current directory at the time they were opened.

The current directory must have an absolute pathname that is less than or equal

to PATHMAX in length.

v Semaphores or message queues that are used within the set of processes being

checkpointed must only be used by processes within the set of processes being

checkpointed.

This condition is not verified when a set of processes is checkpointed. The

checkpoint and restart operations will succeed, but inconsistent results can occur

after the restart.

v The processes that create shared memory must be checkpointed with the

processes using the shared memory if the shared memory is ever detached from

all processes being checkpointed. Otherwise, the shared memory may not be

available after a restart operation.

v The ability to checkpoint and restart a process is not supported for B1 and C2

security configurations.

v A process can checkpoint another process only if it can send a signal to the

process.

In other words, the privilege checking for checkpointing processes is identical to

the privilege checking for sending a signal to the process. A privileged process

(the effective user ID is 0) can checkpoint any process. A set of processes can

only be checkpointed if each process in the set can be checkpointed.

v A process can restart another process only if it can change its entire privilege

state (real, saved, and effective versions of user ID, group ID, and group list) to

match that of the restarted process.

v A set of processes can be restarted only if each process in the set can be

restarted.

64-bit application considerations

Support for 64-bit applications is provided in the MPI library. You can choose

64-bit support by specifying -q64 as a compiler flag, or by setting the environment

variable OBJECT_MODE to 64 at compile and link time. All objects in a 64-bit

environment must be compiled with -q64. You cannot call a 32-bit library from a

64-bit application, nor can you call a 64-bit library from a 32-bit application.

Integers passed to the MPI library are always 32 bits long. If you use the

FORTRAN compiler directive -qintsize=8 as your default integer length, you will

need to type your MPI integer arguments as INTEGER*4. All integer parameters in

mpif.h are explicitly declared INTEGER*4 to prevent -qintsize=8 from altering

their length.

As defined by the MPI standard, the count argument in MPI send and receive calls

is a default size signed integer. In AIX, even 64-bit executables use 32-bit integers

by default. To send or receive extremely large messages, you may need to construct

your own datatype (for example, a ’page’ datatype of 4096 contiguous bytes).

The FORTRAN compilation scripts mpxlf_r, mpxlf90_r, and mpxlf95_r set the

include path for mpif.h to: /usr/lpp/ppe.poe/include/thread64 or

/usr/lpp/ppe.poe/include/thread, as appropriate. Do not add a separate include

path to mpif.h in your compiler scripts or make files, as an incorrect version of

mpif.h could be picked up in compilation, resulting in subtle run time errors.

42 IBM PE for AIX 5L V4 R2: MPI Programming Guide

The AIX 64-bit address space is large enough to remove any limitations on the

number of memory segments that can be used, so the information in “Available

virtual memory segments” on page 34 does not apply to the 64-bit library.

MPI_WAIT_MODE: the nopoll option

Environment variable MPI_WAIT_MODE set to nopoll is supported as an option.

It causes a blocking MPI call to go into a system wait after approximately one

millisecond of polling without a message being received. MPI_WAIT_MODE set

to nopoll may reduce CPU consumption for applications that post a receive call on

a separate thread, and that receive call does not expect an immediate message

arrival. Also, using MPI_WAIT_MODE set to nopoll may increase delay between

message arrival and the blocking call’s return. It is recommended that

MP_CSS_INTERRUPT be set to yes when the nopoll wait is selected, so that the

system wait can be interrupted by the arrival of a message. Otherwise, the nopoll

wait is interrupted at the timing interval set by MP_POLLING_INTERVAL.

Mixed parallelism with MPI and threads

The MPI programming model provides parallelism by using multiple tasks that

communicate by making message passing calls. Many of these MPI calls can block

until some action occurs on another task. Examples include collective

communication, collective MPI-IO, MPI_SEND, MPI_RECV, MPI_WAIT, and the

synchronizations for MPI one-sided.

The threads model provides parallelism by running multiple execution streams in a

single address space, and can depend on data object protection or order

enforcement by mutex lock. Threads waiting for a mutex are blocked until the

thread holding the mutex releases it. The thread holding the mutex will not release

it until it completes whatever action it took the lock to protect. If you choose to do

mutex lock protected threads parallelism and MPI task parallelism in a single

application, you must be careful not to create interlocks between blocking by MPI

call and blocking on mutex locks. The most obvious rule is: avoid making a

blocking MPI call while holding a mutex.

OpenMP and MPI in a single application offers relative safety because the

OpenMP model normally involves distinct parallel sections in which several

threads are spawned at the beginning of the section and joined at the end. The

communication calls occur on the main thread and outside of any parallel section,

so they do not require mutex protection. This segregation of threaded epochs from

communication epochs is safe and simple, whether you use OpenMP or provide

your own threads parallelism.

The threads parallelism model in which some number of threads proceed in a

more or less independent way, but protect critical sections (periods of protected

access to a shared data object) with locks requires more care. In this model, there is

much more chance you will hold a lock while doing a blocking MPI operation

related to some shared data object.

Using MPI and LAPI in the same program

You can use MPI and LAPI concurrently in the same parallel program. Their

operation is logically independent of one another, and you can specify

independently whether each uses the User Space protocol or the IP protocol.

If both MPI and LAPI use the same protocol (either User Space or IP), you can

choose to have them share the underlying packet protocol (User Space or UDP).

Chapter 5. Programming considerations for user applications in POE 43

You do this by setting the POE environment variable MP_MSG_API to mpi_lapi.

If you do not wish to share the underlying packet protocol, set MP_MSG_API to

mpi,lapi.

In User Space, running with shared resource MP_MSG_API set to mpi_lapi causes

LoadLeveler to allocate only one window for the MPI/LAPI pair, rather than two

windows. Since each window takes program resources (segment registers, memory

for DMA send and receive FIFOs, adapter buffers and network tables), sharing the

window makes sense if MPI and LAPI are communicating at different times

(during different phases of the program). If MPI and LAPI are doing concurrent

communication, the DMA receive buffer may be too small to contain packets from

both LAPI and MPI, and packets may be dropped. This may impair performance.

The MP_CSS_INTERRUPT environment variable applies only to the MPI API. At

MPI_INIT time, MPI sets the protocol for the LAPI instance that MPI is using,

according to MPI defaults or as indicated by environment variable

MP_CSS_INTERRUPT. In non-shared mode, MPI retains control of the LAPI

instance that it is using. If there is use of the LAPI API in the same application, the

LAPI_Senv() function can be used to control interrupts for the LAPI API instance,

without affecting the instance that MPI is using.

In shared mode, MPI_INIT sets interrupt behavior of its LAPI instance, just as in

non-shared mode, but MPI has no way to recognize or control changes to the

interrupt mode of this shared instance that may occur later through the

LAPI_Senv() function. Unexpected changes in interrupt mode made with the LAPI

API to the LAPI instance being shared with MPI can affect MPI performance, but

will not affect whether a valid MPI program runs correctly.

In IP, running with shared resource MP_MSG_API set to mpi_lapi uses only one

pair of UDP ports, while running with separated resource MP_MSG_API set to

mpi,lapi uses two pair of UDP ports. In the separated case, there may be a slight

increase in job startup time due to the need for POE to communicate two sets of

port lists.

Differences between MPI in PE 3.2 and PE Version 4

PE 3.2 MPI used an underlying transport layer called MPCI, which was an internal

component of PSSP for the RS/6000 SP system (Cluster 1600). MPCI provided a

reliable byte stream interface, in which user’s data is copied to a send pipe whose

size is up to 64 KB, which is then broken into packets and sent to the receiver. The

receiver assembles the received packets into a receive pipe, and populates the

user’s data reads from the receive pipe. For programs with large numbers of tasks,

the amount of memory allocated to pipes becomes quite large, and reduces the

amount of storage available for user data.

In PE Version 4, MPI uses an underlying transport called LAPI, which is

distributed as an AIX fileset, part of the RSCT component. In contrast to the

reliable byte stream approach of MPCI, LAPI provides a reliable message

protocol, which uses much less storage for jobs with a large number of tasks.

Because the underlying transport mechanism is so different, POE MPI environment

variables used to tune MPCI performance are, in some cases, ignored. Also, there

are new environment variables to tune the LAPI operation. The following

variables, and their corresponding command-line options, are now ignored:

v MP_INTRDELAY, and the corresponding function mp_intrdelay

v MP_SYNC_ON_CONNECT

44 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

v MP_PIPE_SIZE

v MP_ACK_INTERVAL

The following variables are new. A brief description of their intended function is

provided. For more details, see Chapter 11, “POE environment variables and

command-line flags,” on page 69.

MP_UDP_PACKET_SIZE

Specifies the UDP datagram size to be used for UDP/IP message transport.

MP_ACK_THRESH

Sets the threshold for return packet flow control acknowledgements.

MP_USE_BULK_XFER

Causes the use of the Remote Direct Memory Access (RDMA) capability.

See “Remote Direct Memory Access (RDMA) considerations” on page 9.

Differences between MPI in PE 4.1 and PE 4.2

v Environment variable MP_SHARED_MEMORY now has a default of yes.

v Environment variable MP_BUFFER_MEM has been enhanced. See Chapter 11,

“POE environment variables and command-line flags,” on page 69.

v Refer to “Summary of changes for Parallel Environment 4.2” on page xii for

other differences.

Other differences

v Handling shared memory. See Chapter 3, “Using shared memory,” on page 15.

v The MPI communication subsystem is activated at MPI_INIT and closed at

MPI_FINALIZE. When MPI and LAPI share the subsystem, whichever call

comes first between MPI_INIT and LAPI_INIT will provide the activation.

Whichever call comes last between MPI_FINALIZE and LAPI_TERM will close

it.

v Additional service threads. See “POE-supplied threads.”

POE-supplied threads

Your parallel program is normally run under the control of POE. The

communication stack includes MPI, LAPI, and the hardware interface layer. The

communication stack also provides access to the global switch clock. This stack

makes use of several internally spawned threads. The options under which the job

is run affect which threads are created, therefore some, but not all, of the threads

listed below are created in a typical application run. Most of these threads sleep in

the kernel waiting for notification of some rare condition and do not compete for

CPU access during normal job processing. When a job is run in polling mode,

there will normally be little CPU demand by threads other than the users’

application threads.

There can be MPI service threads spawned to handle MPE_I non-blocking

collective communication, MPI-IO, and MPI one-sided communication. The threads

are spawned as needed and kept for reuse. An application that uses none of these

functions will not have any of these threads. An application that uses MPE_I

non-blocking collective communication, MPI-IO, or MPI one-sided communication

will spawn one or more MPI service threads at first need. When the operation that

required the thread finishes, the thread will be left sleeping in the kernel and will

be visible in the debugger. At a subsequent need, if a sleeping thread is available,

it is triggered for reuse to carry out the non-blocking collective communication

MPI-IO and MPI one-sided operation. While waiting to be reused, the threads do

Chapter 5. Programming considerations for user applications in POE 45

|
|
|

|
|

|
|

|
|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

not consume significant resources. The MPE_I, MPI-IO, or MPI one-sided API call

that triggers one of these service threads to run in a given task can, and usually

does, come from some remote task. There can be substantial CPU usage by these

threads when non-blocking collective communication MPI-IO, or MPI one-sided

communication is active.

This information is provided to help you understand what you will see in a

debugger when examining an MPI task. You can almost always ignore the service

threads in your debugging but you may need to find your own thread before you

can understand your application behavior. The dbx commands threads and thread

current n are useful for displaying the threads list and switching focus to the

thread you need to debug.

Table 4 is an example POE/MPI/LAPI thread inventory, in order of thread

creation. The list assumes shared memory over two windows, MPI only. Simpler

environments (depending on options selected) will involve fewer threads.

 Table 4. POE/MPI/LAPI Thread Inventory

Name Description

T1 User’s main program

T2 POE asynchronous exit thread (SIGQUIT, SIGTERM, and so forth)

T3 hardware interface layer device interrupt/timer thread

T4 hardware interface layer fault service handler thread

T5 LAPI Completion handler thread (one default)

T6 LAPI Shared memory dispatcher (shared memory only)

T7 Switch clock service thread

T8 MPI Service threads (if MPE_I nonblocking collective communication,

MPI-IO or MPI one-sided calls used). As many as eight are created as

required.

46 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|

|
|
|

||

||

||

||

||

||

||

||

||

||
|
|
|
|

Chapter 6. Using error handlers

This chapter provides information on using error handlers.

Predefined error handler for C++

The C++ language interface for MPI includes the predefined error handler

MPI::ERRORS_THROW_EXCEPTIONS for use with MPI::Comm::Set_errhandler,

MPI::File::Set_errhandler, and MPI::Win::Set_errhandler.

MPI::ERRORS_THROW_EXCEPTIONS can be set or retrieved only by C++

functions. If a non-C++ program causes an error that invokes the

MPI::ERRORS_THROW_EXCEPTIONS error handler, the exception will pass up

the calling stack until C++ code can catch it. If there is no C++ code to catch it, the

behavior is undefined.

The error handler MPI::ERRORS_THROW_EXCEPTIONS causes an MPI::Exception

to be thrown for any MPI result code other than MPI::SUCCESS.

The C++ bindings for exceptions follow:

namespace MPI [

Exception::Exception(int error_code);

int Exception::Get_error_code() const;

int Exception::Get_error_class() const;

const char* Exception::Get_error_string() const;

];

The public interface to MPI::Exception class is defined as follows:

namespace MPI [

 class Exception [

 public:

Exception(int error_code);

int Get_error_code() const;

 int Get_error_class() const;

 const char *Get_error_string() const;

];

];

The PE MPI implementation follows:

public:

 Exception(int ec) : error_code(ec)

 [

 (void)MPI_Error_class(error_code, &error_class);

 int resultlen;

 (void)MPI_Error_string(error_code, error_string, &resultlen);

]

 virtual ~Exception(){ }

 virtual int Get_error_code() const

 [

© Copyright IBM Corp. 1993, 2005 47

return error_code;

]

 virtual int Get_error_class() const

 [

 return error_class;

]

 virtual const char* Get_error_string() const

 [

 return error_string;

]

 protected:

 int error_code;

 char error_string[MPI_MAX_ERROR_STRING];

 int error_class;

 };

48 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 7. Predefined MPI datatypes

This chapter lists the predefined MPI datatypes that you can use with MPI:

v “Special purpose datatypes”

v “Datatypes for C language bindings”

v “Datatypes for FORTRAN language bindings” on page 50

v “Datatypes for reduction functions (C reduction types)” on page 50

v “Datatypes for reduction functions (FORTRAN reduction types)” on page 51

Special purpose datatypes

 Table 5. Special purpose datatypes

Datatype Description

MPI_BYTE Untyped byte data

MPI_LB Explicit lower bound marker

MPI_PACKED Packed data (byte)

MPI_UB Explicit upper bound marker

Datatypes for C language bindings

 Table 6. Datatypes for C language bindings

Datatype Description

MPI_CHAR 8-bit character

MPI_DOUBLE 64-bit floating point

MPI_FLOAT 32-bit floating point

MPI_INT 32-bit integer

MPI_LONG 32-bit integer

MPI_LONG_DOUBLE 64-bit floating point

MPI_LONG_LONG 64-bit integer

MPI_LONG_LONG_INT 64-bit integer

MPI_SHORT 16-bit integer

MPI_SIGNED_CHAR 8-bit signed character

MPI_UNSIGNED 32-bit unsigned integer

MPI_UNSIGNED_CHAR 8-bit unsigned character

MPI_UNSIGNED_LONG 32-bit unsigned integer

MPI_UNSIGNED_LONG_LONG 64-bit unsigned integer

MPI_UNSIGNED_SHORT 16-bit unsigned integer

MPI_WCHAR Wide (16-bit) unsigned character

© Copyright IBM Corp. 1993, 2005 49

|

|

|

|

|

|

Datatypes for FORTRAN language bindings

 Table 7. Datatypes for FORTRAN language bindings

Datatype Description

MPI_CHARACTER 8-bit character

MPI_COMPLEX 32-bit floating point real, 32-bit floating point imaginary

MPI_COMPLEX8 32-bit floating point real, 32-bit floating point imaginary

MPI_COMPLEX16 64-bit floating point real, 64-bit floating point imaginary

MPI_COMPLEX32 128-bit floating point real, 128-bit floating point imaginary

MPI_DOUBLE_COMPLEX 64-bit floating point real, 64-bit floating point imaginary

MPI_DOUBLE_PRECISION 64-bit floating point

MPI_INTEGER 32-bit integer

MPI_INTEGER1 8-bit integer

MPI_INTEGER2 16-bit integer

MPI_INTEGER4 32-bit integer

MPI_INTEGER8 64-bit integer

MPI_LOGICAL 32-bit logical

MPI_LOGICAL1 8-bit logical

MPI_LOGICAL2 16-bit logical

MPI_LOGICAL4 32-bit logical

MPI_LOGICAL8 64-bit logical

MPI_REAL 32-bit floating point

MPI_REAL4 32-bit floating point

MPI_REAL8 64-bit floating point

MPI_REAL16 128-bit floating point

Datatypes for reduction functions (C reduction types)

 Table 8. Datatypes for reduction functions (C reduction types)

Datatype Description

MPI_DOUBLE_INT {MPI_DOUBLE, MPI_INT}

MPI_FLOAT_INT {MPI_FLOAT, MPI_INT}

MPI_LONG_DOUBLE_INT {MPI_LONG_DOUBLE, MPI_INT}

MPI_LONG_INT {MPI_LONG, MPI_INT}

MPI_SHORT_INT {MPI_SHORT, MPI_INT}

MPI_2INT {MPI_INT, MPI_INT}

50 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Datatypes for reduction functions (FORTRAN reduction types)

 Table 9. Datatypes for reduction functions (FORTRAN reduction types))

Datatype Description

MPI_2COMPLEX {MPI_COMPLEX, MPI_COMPLEX}

MPI_2DOUBLE_PRECISION {MPI_DOUBLE_PRECISION, MPI_DOUBLE_PRECISION}

MPI_2INTEGER {MPI_INTEGER, MPI_INTEGER}

MPI_2REAL {MPI_REAL, MPI_REAL}

Chapter 7. Predefined MPI datatypes 51

52 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 8. MPI reduction operations

The chapter describes predefined MPI reduction operations, including their

datatypes, and provides C and FORTRAN examples.

Predefined operations

Table 10 lists the predefined operations for use with MPI_ALLREDUCE,

MPI_REDUCE, MPI_REDUCE_SCATTER and MPI_SCAN. To invoke a predefined

operation, place any of the following reductions in op.

 Table 10. Predefined reduction operations

Operation Description

MPI_BAND bitwise AND

MPI_BOR bitwise OR

MPI_BXOR bitwise XOR

MPI_LAND logical AND

MPI_LOR logical OR

MPI_LXOR logical XOR

MPI_MAX maximum value

MPI_MAXLOC maximum value and location

MPI_MIN minimum value

MPI_MINLOC minimum value and location

MPI_PROD product

MPI_REPLACE f(a,b) = b (the current value in the target memory is

replaced by the value supplied by the origin)

MPI_SUM sum

Datatype arguments of reduction operations

Table 11 lists the basic datatype arguments of the reduction operations.

 Table 11. Valid datatype arguments

Type Arguments

Byte MPI_BYTE

C integer MPI_INT

MPI_LONG

MPI_LONG_LONG_INT

MPI_SHORT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_UNSIGNED_LONG_LONG

MPI_UNSIGNED_SHORT

© Copyright IBM Corp. 1993, 2005 53

|
|

Table 11. Valid datatype arguments (continued)

Type Arguments

C pair MPI_DOUBLE_INT

MPI_FLOAT_INT

MPI_LONG_INT

MPI_LONG_DOUBLE_INT

MPI_SHORT_INT

MPI_2INT

Complex MPI_COMPLEX

Floating point MPI_DOUBLE

MPI_DOUBLE_PRECISION

MPI_FLOAT

MPI_LONG_DOUBLE

MPI_REAL

FORTRAN integer MPI_INTEGER

MPI_INTEGER8

FORTRAN pair MPI_2DOUBLE_PRECISION

MPI_2INTEGER

MPI_2REAL

Logical MPI_LOGICAL

Valid datatypes for the op option

Table 12 lists the valid datatypes for each op option.

 Table 12. Valid datatypes for the op option

Type Datatypes

Byte MPI_BAND

MPI_BOR

MPI_BXOR

MPI_REPLACE

C integer MPI_BAND

MPI_BOR

MPI_BXOR

MPI_LAND

MPI_LOR

MPI_LXOR

MPI_MAX

MPI_MIN

MPI_PROD

MPI_REPLACE

MPI_SUM

C pair MPI_MAXLOC

MPI_MINLOC

MPI_REPLACE

Complex MPI_PROD

MPI_REPLACE

MPI_SUM

Floating point MPI_MAX

MPI_MIN

MPI_PROD

MPI_REPLACE

MPI_SUM

54 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 12. Valid datatypes for the op option (continued)

Type Datatypes

FORTRAN integer MPI_BAND

MPI_BOR

MPI_BXOR

MPI_MAX

MPI_MIN

MPI_PROD

MPI_REPLACE

MPI_SUM

FORTRAN pair MPI_MAXLOC

MPI_MINLOC

MPI_REPLACE

Logical MPI_LAND

MPI_LOR

MPI_LXOR

MPI_REPLACE

Examples

Examples of user-defined reduction functions for integer vector addition follow.

C example

void int_sum (int *in, int *inout,

 int *len, MPI_Datatype *type);

{

 int i

 for (i=0; i<*len; i++) {

 inout[i] + = in[i];

 }

}

FORTRAN example

 SUBROUTINE INT_SUM(IN,INOUT,LEN,TYPE)

 INTEGER IN(*),INOUT(*),LEN,TYPE,I

 DO I = 1,LEN

 INOUT(I) = IN(I) + INOUT(I)

 ENDDO

 END

User-supplied reduction operations have four arguments:

v The first argument, in, is an array or scalar variable. The length, in elements, is

specified by the third argument, len.

This argument is an input array to be reduced.

v The second argument, inout, is an array or scalar variable. The length, in

elements, is specified by the third argument, len.

This argument is an input array to be reduced and the result of the reduction

will be placed here.

v The third argument, len is the number of elements in in and inout to be

reduced.

v The fourth argument type is the datatype of the elements to be reduced.

Chapter 8. MPI reduction operations 55

Users may code their own reduction operations, with the restriction that the

operations must be associative. Also, C programmers should note that the values

of len and type will be passed as pointers. No communication calls are allowed in

user-defined reduction operations. See “Limitations in setting the thread stack size”

on page 37 for thread stack size considerations when using the MPI threads library.

56 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 9. C++ MPI constants

This chapter lists C++ MPI constants, including the following:

v “Error classes”

v “Maximum sizes” on page 58

v “Environment inquiry keys” on page 58

v “Predefined attribute keys” on page 59

v “Results of communicator and group comparisons” on page 59

v “Topologies” on page 59

v “File operation constants” on page 59

v “MPI-IO constants” on page 59

v “One-sided constants” on page 60

v “Combiner constants used for datatype decoding functions” on page 60

v “Assorted constants” on page 60

v “Collective constants” on page 60

v “Error handling specifiers” on page 60

v “Special datatypes for construction of derived datatypes” on page 61

v “Elementary datatypes (C and C++)” on page 61

v “Elementary datatypes (FORTRAN)” on page 61

v “Datatypes for reduction functions (C and C++)” on page 61

v “Datatypes for reduction functions (FORTRAN)” on page 61

v “Optional datatypes” on page 62

v “Collective operations” on page 62

v “Null handles” on page 62

v “Empty group” on page 62

v “Threads constants” on page 63

v “FORTRAN 90 datatype matching constants” on page 63

Error classes

MPI::SUCCESS

MPI::ERR_BUFFER

MPI::ERR_COUNT

MPI::ERR_TYPE

MPI::ERR_TAG

MPI::ERR_COMM

MPI::ERR_RANK

MPI::ERR_REQUEST

MPI::ERR_ROOT

MPI::ERR_GROUP

MPI::ERR_OP

MPI::ERR_TOPOLOGY

MPI::ERR_DIMS

MPI::ERR_ARG

MPI::ERR_UNKNOWN

MPI::ERR_TRUNCATE

© Copyright IBM Corp. 1993, 2005 57

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

MPI::ERR_OTHER

MPI::ERR_INTERN

MPI::ERR_IN_STATUS

MPI::ERR_PENDING

MPI::ERR_INFO_KEY

MPI::ERR_INFO_VALUE

MPI::ERR_INFO_NOKEY

MPI::ERR_INFO

MPI::ERR_FILE

MPI::ERR_NOT_SAME

MPI::ERR_AMODE

MPI::ERR_UNSUPPORTED_DATAREP

MPI::ERR_UNSUPPORTED_OPERATION

MPI::ERR_NO_SUCH_FILE

MPI::ERR_FILE_EXISTS

MPI::ERR_BAD_FILE

MPI::ERR_ACCESS

MPI::ERR_NO_SPACE

MPI::ERR_QUOTA

MPI::ERR_READ_ONLY

MPI::ERR_FILE_IN_USE

MPI::ERR_DUP_DATAREP

MPI::ERR_CONVERSION

MPI::ERR_IO

MPI::ERR_WIN

MPI::ERR_BASE

MPI::ERR_SIZE

MPI::ERR_DISP

MPI::ERR_LOCKTYPE

MPI::ERR_ASSERT

MPI::ERR_RMA_CONFLICT

MPI::ERR_RMA_SYNC

MPI::ERR_NO_MEM

MPI::ERR_LASTCODE

Maximum sizes

MPI::MAX_ERROR_STRING

MPI::MAX_PROCESSOR_NAME

MPI::MAX_FILE_NAME

MPI::MAX_DATAREP_STRING

MPI::MAX_INFO_KEY

MPI::MAX_INFO_VAL

MPI::MAX_OBJECT_NAME

Environment inquiry keys

MPI::TAG_UB

MPI::IO

MPI::HOST

MPI::WTIME_IS_GLOBAL

58 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Predefined attribute keys

MPI::LASTUSEDCODE

MPI::WIN_BASE

MPI::WIN_SIZE

MPI::WIN_DISP_UNIT

Results of communicator and group comparisons

MPI::IDENT

MPI::CONGRUENT

MPI::SIMILAR

MPI::UNEQUAL

Topologies

MPI::GRAPH

MPI::CART

File operation constants

MPI::SEEK_SET

MPI::SEEK_CUR

MPI::SEEK_END

MPI::DISTRIBUTE_NONE

MPI::DISTRIBUTE_BLOCK

MPI::DISTRIBUTE_CYCLIC

MPI::DISTRIBUTE_DFLT_DARG

MPI::ORDER_C

MPI::ORDER_FORTRAN

MPI::DISPLACEMENT_CURRENT

MPI-IO constants

MPI::MODE_RDONLY

MPI::MODE_WRONLY

MPI::MODE_RDWR

MPI::MODE_CREATE

MPI::MODE_APPEND

MPI::MODE_EXCL

MPI::MODE_DELETE_ON_CLOSE

MPI::MODE_UNIQUE_OPEN

MPI::MODE_SEQUENTIAL

MPI::MODE_NOCHECK

MPI::MODE_NOSTORE

MPI::MODE_NOPUT

MPI::MODE_NOPRECEDE

MPI::MODE_NOSUCCEED

Chapter 9. C++ MPI constants 59

One-sided constants

MPI::LOCK_EXCLUSIVE

MPI::LOCK_SHARED

Combiner constants used for datatype decoding functions

MPI::COMBINER_NAMED

MPI::COMBINER_DUP

MPI::COMBINER_CONTIGUOUS

MPI::COMBINER_VECTOR

MPI::COMBINER_HVECTOR_INTEGER

MPI::COMBINER_HVECTOR

MPI::COMBINER_INDEXED

MPI::COMBINER_HINDEXED_INTEGER

MPI::COMBINER_HINDEXED

MPI::COMBINER_INDEXED_BLOCK

MPI::COMBINER_STRUCT_INTEGER

MPI::COMBINER_STRUCT

MPI::COMBINER_SUBARRAY

MPI::COMBINER_DARRAY

MPI::COMBINER_F90_REAL

MPI::COMBINER_F90_COMPLEX

MPI::COMBINER_F90_INTEGER

MPI::COMBINER_RESIZED

Assorted constants

MPI::BSEND_OVERHEAD

MPI::PROC_NULL

MPI::ANY_SOURCE

MPI::ANY_TAG

MPI::UNDEFINED

MPI::KEYVAL_INVALID

MPI::BOTTOM

Collective constants

MPI::ROOT

MPI::IN_PLACE

Error handling specifiers

MPI::ERRORS_ARE_FATAL

MPI::ERRORS_RETURN

MPI::ERRORS_THROW_EXCEPTIONS

(see “Predefined error handler for C++” on page 47)

60 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Special datatypes for construction of derived datatypes

MPI::UB

MPI::LB

MPI::BYTE

MPI::PACKED

Elementary datatypes (C and C++)

MPI::CHAR

MPI::UNSIGNED_CHAR

MPI::SIGNED_CHAR

MPI::SHORT

MPI::INT

MPI::LONG

MPI::UNSIGNED_SHORT

MPI::UNSIGNED

MPI::UNSIGNED_LONG

MPI::FLOAT

MPI::DOUBLE

MPI::LONG_DOUBLE

MPI::LONG_LONG

MPI::UNSIGNED_LONG_LONG

MPI::WCHAR

Elementary datatypes (FORTRAN)

MPI::INTEGER

MPI::REAL

MPI::DOUBLE_PRECISION

MPI::F_COMPLEX

MPI::LOGICAL

MPI::CHARACTER

Datatypes for reduction functions (C and C++)

MPI::FLOAT_INT

MPI::DOUBLE_INT

MPI::LONG_INT

MPI::TWOINT

MPI::SHORT_INT

MPI::LONG_DOUBLE_INT

Datatypes for reduction functions (FORTRAN)

MPI::TWOREAL

MPI::TWODOUBLE_PRECISION

MPI::TWOINTEGER

MPI::TWOF_COMPLEX

Chapter 9. C++ MPI constants 61

Optional datatypes

MPI::INTEGER1

MPI::INTEGER2

MPI::INTEGER4

MPI::INTEGER8

MPI::REAL4

MPI::REAL8

MPI::REAL16

MPI::LOGICAL1

MPI::LOGICAL2

MPI::LOGICAL4

MPI::LOGICAL8

MPI::F_DOUBLE_COMPLEX

MPI::F_COMPLEX8

MPI::F_COMPLEX16

MPI::F_COMPLEX32

Collective operations

MPI::MAX

MPI::MIN

MPI::SUM

MPI::PROD

MPI::MAXLOC

MPI::MINLOC

MPI::BAND

MPI::BOR

MPI::BXOR

MPI::LAND

MPI::LOR

MPI::LXOR

MPI::REPLACE

Null handles

MPI::GROUP_NULL

MPI::COMM_NULL

MPI::DATATYPE_NULL

MPI::REQUEST_NULL

MPI::OP_NULL

MPI::ERRHANDLER_NULL

MPI::INFO_NULL

MPI::WIN_NULL

Empty group

MPI::GROUP_EMPTY

62 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Threads constants

MPI::THREAD_SINGLE

MPI::THREAD_FUNNELED

MPI::THREAD_SERIALIZED

MPI::THREAD_MULTIPLE

FORTRAN 90 datatype matching constants

MPI::TYPECLASS_REAL

MPI::TYPECLASS_INTEGER

MPI::TYPECLASS_COMPLEX

Chapter 9. C++ MPI constants 63

64 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 10. MPI size limits

This chapter gives limitations for MPI elements and parallel job tasks, including:

v “System limits.”

v “Maximum number of tasks and tasks per node” on page 67.

System limits

The following list includes system limits on the size of various MPI elements and

the relevant environment variable or tunable parameter. The MPI standard

identifies several values that have limits in any MPI implementation. For these

values, the standard indicates a named constant to express the limit. See mpi.h for

these constants and their values. The limits described below are specific to PE and

are not part of standard MPI.

v Number of tasks: MP_PROCS

v Maximum number of tasks: 8192

v Maximum buffer size for any MPI communication (for 32-bit applications only):

2 GB

v Default early arrival buffer size: (MP_BUFFER_MEM)

 When using Internet Protocol (IP): 2 800 000 bytes

 When using User Space: 64 MB
v Minimum pre-allocated early arrival buffer size: (50 * eager_limit) number of

bytes

v Maximum pre_allocated early arrival buffer size: 256 MB

v Minimum message envelope buffer size: 1 MB

v Default eager limit (MP_EAGER_LIMIT): See Table 13 on page 66. Note that the

default values shown in Table 13 on page 66 are initial estimates that are used

by the MPI library. Depending on the value of MP_BUFFER_MEM and the job

type, these values will be adjusted to guarantee a safe eager send protocol.

v Maximum eager limit: 256 KB

v MPI uses the MP_BUFFER_MEM and the MP_EAGER_LIMIT values that are

selected for a job to determine how many complete messages, each with a size

that is equal to or less than the eager_limit, can be sent eagerly from every task

of the job to a single task, without causing the single target to run out of buffer

space. This is done by allocating to each sending task a number of message

credits for each target. The sending task will consume one message credit for

each eager send to a particular target. It will get that credit back after the

message has been matched at that target.

The sending task can continue to send eager messages to a particular target as

long as it still has message credits for that target. The following equation is used

to calculate the number of credits to be allocated:

 MP_BUFFER_MEM / (MP_PROCS * MAX(MP_EAGER_LIMIT, 64))

MPI uses this equation to ensure that there are at least two credits for each

target. If needed, MPI reduces the initially selected value of

MP_EAGER_LIMIT, or increases the initially selected value of

MP_BUFFER_MEM, in order to achieve this minimum threshold of two credits

for each target.

If the user has specified an initial value for MP_BUFFER_MEM or

MP_EAGER_LIMIT, and MPI has changed either one or both of these values,

© Copyright IBM Corp. 1993, 2005 65

|

|
|

|

|

|
|
|
|

|

|
|
|
|
|
|

|
|

an informational message is issued. If the user has specified MP_BUFFER_MEM

using the two values format, then the maximum value specified by the second

parameter will be used in the equation above. See IBM Parallel Environment 4.2:

Operation and Use, Volume 1 for more information about specifying values for

MP_BUFFER_MEM.

If the user allows both MP_BUFFER_MEM and MP_EAGER_LIMIT to default,

then the initial value that was selected for MP_BUFFER_MEM will be 64 MB for

a User Space job and 2.8 MB for an IP job. MPI estimates the initial value for

MP_EAGER_LIMIT based on the job size, as shown in Table 13. MPI then does

the calculation again to ensure that there will be at least two credits for each

target.

For example, with the defaults of both MP_BUFFER_MEM and

MP_EAGER_LIMIT then, according to the equation, each sending task of an

8192 task User Space job will have a minimum of 8 credits for each target. Each

sending task of a 4096 task User Space job will have a minimum of 16 complete

credits for each target. However, for an IP job, because of the smaller

MP_BUFFER_MEM value, only jobs with less than 11 tasks per job will have

more than two credits allocated for each target. Most IP jobs can have only two

credits for each target, and even this can be accomplished only by greatly

reducing the value of the MP_EAGER_LIMIT. For example, each sending task

of an 8192 tasks IP job can have only two 128 byte credits for each target,

including the task itself. For an IP job you should consider increasing

MP_BUFFER_MEM above the 2.8 MB default, unless memory is very limited.

Any time a message that is small enough to be eligible for eager send cannot be

guaranteed destination buffer space, the message is handled by rendezvous

protocol. Destination buffer space unavailability cannot cause a safe MPI

program to fail, but could cause hangs in unsafe MPI programs. An unsafe

program is one that assumes MPI can guarantee system buffering of sent data

until the receive is posted. The MPI standard warns that unsafe programs,

though they may work in some cases, are not valid MPI. We suggest every

application be checked for safety by running it just once with

MP_EAGER_LIMIT set to 0, which will cause an unsafe application to hang.

Because eager limit, along with task count, affects the minimum buffer memory

requirement, it is possible to produce an unworkable combination when both

MP_EAGER_LIMIT and MP_BUFFER_MEM are explicitly set. MPI will

override unworkable combinations. If either the MP_EAGER_LIMIT or the

MP_BUFFER_MEM value is changed by MPI, an informational message is

issued.

 Table 13. MPI eager limits

Number of tasks Default limit (MP_EAGER_LIMIT)

1 to 256 32768

257 to 512 16384

513 to 1024 8192

1025 to 2048 4096

2049 to 4096 2048

4097 to 8192 1024

v Maximum aggregate unsent data, per task: no specific limit

v Maximum number of communicators, file handles, and windows: approximately

2000

v Maximum number of distinct tags: all nonnegative integers less than 2**32-1

66 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

||

||

||

||

||

||

||

||
|

Maximum number of tasks and tasks per node

The following table lists the limits on the total number of tasks in a parallel job,

and the maximum number of tasks on a node (operating system image). If two

limits are listed, the most restrictive limit applies.

 Table 14. Task limits for parallel jobs

Protocol Library Switch/Adapter Total Task Limit Task per Node Limit

IP any 8192 large

User Space SP Switch2/PCI-X 8192 32

User Space SP Switch2/PCI 8192 32

User Space pSeries HPS with one

adapter

8192 64

User Space pSeries HPS with

two adapters per

network

8192 128

User Space SP Switch2/SW2 8192 16

For a system with a pSeries HPS switch and adapter, the Task per Node Limit is 64

tasks per adapter per network. For a system with two adapters per network, the

task per node limit is 128, or 64 * 2. This enables the running of a 128 task per

node MPI job over User Space. This may be useful on 64 CPU nodes with the

Simultaneous Multi-Threading (SMT) technology available on POWER5 and AIX

5.3 enabled. The LoadLeveler configuration also helps determine how may tasks

can be run on a node. To run 128 tasks per node, LoadLeveler must be configured

with 128 starters per node. In theory, you can configure more than two adapters

per network and run more than 128 tasks per node. However, this means running

more than one task per CPU, and results in reduced performance. Also, the lower

layer of the protocol stack has a 128 tasks per node limit for enabling shared

memory. The protocol stack does not use shared memory when there are more

than 128 tasks per node.

For running an MPI job over IP, the task per node limit is not affected by the

number of adapters; the task per node limit is determined only by the number of

LoadLeveler starters configured per node. The 128 task per node limit for enabling

shared memory usage also applies to MPI/IP jobs.

Although the PCI adapters support the stated limits for tasks per node, maximum

aggregate bandwidth through the adapter is achieved with a smaller task per node

count, if all tasks are simultaneously involved in message passing. Thus, if

individual MPI tasks can do SMP parallel computations on multiple CPUs (using

OpenMP or threads), performance may be better than if all MPI tasks compete for

adapter resources.

The user may also want to consider using MPI IP. On SP Switch2 PCI systems with

many MPI tasks sharing adapters, MPI IP may perform better than MPI User

Space.

Chapter 10. MPI size limits 67

|

|

|

|
|
||

||
|
|

||

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

68 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 11. POE environment variables and command-line

flags

This section contains tables which summarize the environment variables and

command-line flags discussed throughout this book. You can set these variables

and flags to influence the execution of parallel programs, and the operation of

certain tools. The command-line flags temporarily override their associated

environment variable. The tables divide the environment variables and flags by

function:

v Table 15 on page 70 summarizes the environment variables and flags for

controlling the Partition Manager. These environment variables and flags enable

you to specify such things as an input or output host list file, and the method of

node allocation.

v Table 16 on page 73 summarizes the environment variables and flags for Job

Specifications. These environment variables and flags determine whether or not

the Partition Manager should maintain the partition for multiple job steps,

whether commands should be read from a file or STDIN, and how the partition

should be loaded.

v Table 17 on page 74 summarizes the environment variables and flags for

determining how I/O from the parallel tasks should be handled. These

environment variables and flags set the input and output modes, and determine

whether or not output is labeled by task id.

v Table 18 on page 76 summarizes the environment variables and flags for

collecting diagnostic information. These environment variables and flags enable

you to generate diagnostic information that may be required by the IBM Support

Center in resolving PE-related problems.

v Table 19 on page 76 summarizes the environment variables and flags for the

Message Passing Interface. These environment variables and flags allow you to

change message and memory sizes, as well as other message passing

information.

v Table 20 on page 83 summarizes the variables and flags for core file generation.

v Table 21 on page 83 summarizes some miscellaneous environment variables and

flags. These environment variables and flags provide control for the Program

Marker Array, enable additional error checking, and let you set a dispatch

priority class for execution.

You can use the POE command-line flags on the poe and pdbx commands. You

can also use the following flags on program names when individually loading

nodes from STDIN or a POE commands file.

v -infolevel or -ilevel

v -euidevelop

In the tables that follow, a check mark (U) denotes those flags you can use when

individually loading nodes.

© Copyright IBM Corp. 1993, 2005 69

Table 15. POE environment variables and command-line flags for partition manager control

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_ADAPTER_USE

-adapter_use

How the node’s adapter should be used.

The User Space communication

subsystem library does not require

dedicated use of the high performance

switch on the node. Adapter use will be

defaulted, but shared usage may be

specified.

One of the following

strings:

dedicated

Only a single

program task can

use the adapter.

shared A number of tasks

on the node can

use the adapter.

Dedicated for

User Space jobs,

shared for IP jobs.

MP_CPU_USE

-cpu_use

How the node’s CPU should be used.

The User Space communication

subsystem library does not require

unique CPU use on the node. CPU use

will be defaulted, but multiple use may

be specified.

For example, either one job per node gets

all CPUs, or more than one job can go on

a node.

One of the following

strings:

unique Only your

program’s tasks

can use the CPU.

multiple

Your program may

share the node

with other users.

Unique for User

Space jobs,

multiple for IP

jobs.

MP_EUIDEVICE

-euidevice

The adapter set to use for message

passing – either Ethernet, FDDI,

token-ring, the IBM RS/6000 SP’s high

performance switch adapter, the SP

switch 2, or the pSeries High

Performance Switch.

One of the following

strings:

en0 Ethernet

fi0 FDDI

tr0 token-ring

css0 high performance

switch

csss SP switch 2

sn_all

sn_single

ml0

The adapter set

used as the

external network

address.

MP_EUILIB

-euilib

The communication subsystem

implementation to use for communication

– either the IP communication subsystem

or the User Space communication

subsystem.

One of the following

strings:

ip The IP

communication

subsystem.

us The User Space

communication

subsystem.
Note: This specification is

case-sensitive.

ip

MP_EUILIBPATH

-euilibpath

The path to the message passing and

communication subsystem libraries. This

only needs to be set if the libraries are

moved, or an alternate set is being used.

Any path specifier. /usr/lpp/ppe.poe/lib

70 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|

|
|
|
|
|

Table 15. POE environment variables and command-line flags for partition manager control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_HOSTFILE

-hostfile -hfile

The name of a host list file for node

allocation.

Any file specifier or the

word NULL.

host.list in the

current directory.

MP_INSTANCES

-instances

The number of instances of User Space

windows or IP addresses to be assigned.

This value is expressed as an integer, or

the string max. If the values specified

exceeds the maximum allowed number of

instances, as determined by LoadLeveler,

that number is substituted.

A positive integer, or the

string max.

1

MP_PROCS

-procs

The number of program tasks. Any number from 1 to the

maximum supported

configuration.

1

MP_PULSE

-pulse

The interval (in seconds) at which POE

checks the remote nodes to ensure that

they are actively communicating with the

home node.

Note: Pulse is ignored for pdbx.

An integer greater than or

equal to 0.

600

MP_RESD

-resd

Whether or not the Partition Manager

should connect to LoadLeveler to allocate

nodes.

Note: When running POE from a

workstation that is external to the

LoadLeveler cluster, the LoadL.so fileset

must be installed on the external node

(see Using and Administering LoadLeveler

and IBM Parallel Environment for AIX:

Installation for more information).

yes no Context

dependent

MP_RETRY

-retry

The period of time (in seconds) between

processor node allocation retries by POE

if there are not enough processor nodes

immediately available to run a program.

This is valid only if you are using

LoadLeveler. If the character string wait

is specified instead of a number, no

retries are attempted by POE, and the job

remains enqueued in LoadLeveler until

LoadLeveler either schedules the job or

cancels it.

An integer greater than or

equal to 0, or the

case-insensitive value wait.

0 (no retry)

MP_RETRYCOUNT

-retrycount

The number of times (at the interval set

by MP_RETRY) that the partition

manager should attempt to allocate

processor nodes. This value is ignored if

MP_RETRY is set to the character string

wait.

An integer greater than or

equal to 0.

0

Chapter 11. POE environment variables and command-line flags 71

Table 15. POE environment variables and command-line flags for partition manager control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_MSG_API

-msg_api

To indicate to POE which message

passing API is being used by the

application code.

MPI

Indicates that the application makes

only MPI calls.

LAPI

Indicates that the application makes

only LAPI calls.

MPI_LAPI

Indicates that calls to both message

passing APIs are used in the

application, and the same set of

communication resources (windows,

IP addresses) is to be shared between

them.

MPI,LAPI

Indicates that calls to both message

passing APIs are used in the

application, with dedicated resources

assigned to each of them.

LAPI,MPI

Has a meaning identical to MPI,LAPI.

MPI

LAPI

MPI_LAPI

MPI,LAPI

LAPI,MPI

MPI

MP_RMPOOL

-rmpool

The name or number of the pool that

should be used for nonspecific node

allocation. This environment

variable/command-line flag only applies

to LoadLeveler.

An identifying pool name

or number.

None

MP_NODES

-nodes

To specify the number of processor nodes

on which to run the parallel tasks. It may

be used alone or in conjunction with

MP_TASKS_PER_NODE and/or

MP_PROCS.

Any number from 1 to the

maximum supported

configuration.

None

MP_TASKS_PER_

NODE

-tasks_per_node

To specify the number of tasks to be run

on each of the physical nodes. It may be

used in conjunction with MP_NODES

and/or MP_PROCS, but may not be

used alone.

Any number from 1 to the

maximum supported

configuration.

None

MP_SAVEHOSTFILE

-savehostfile

The name of an output host list file to be

generated by the Partition Manager.

Any relative or full path

name.

None

MP_REMOTEDIR

(no associated

command line flag)

The name of a script which echoes the

name of the current directory to be used

on the remote nodes.

Any file specifier. None

MP_TIMEOUT

(no associated

command line flag)

The length of time that POE waits before

abandoning an attempt to connect to the

remote nodes.

Any number greater than 0.

If set to 0 or a negative

number, the value is

ignored.

150 seconds

72 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

Table 15. POE environment variables and command-line flags for partition manager control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_CKPTFILE

(no associated

command line flag)

The base name of the checkpoint file. Any file specifier.

MP_CKPTDIR

(no associated

command line flag)

The directory where the checkpoint file

will reside.

Any path specifier. Directory from

which POE is run.

 Table 16. POE environment variables/command-line flags for job specification

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_CMDFILE

-cmdfile

The name of a POE commands file used

to load the nodes of your partition. If set,

POE will read the commands file rather

than STDIN.

Any file specifier. None

MP_LLFILE

-llfile

The name of a LoadLeveler job command

file for node allocation. If you are

performing specific node allocation, you

can use a LoadLeveler job command file

in conjunction with a host list file. If you

do, the specific nodes listed in the host

list file will be requested from

LoadLeveler.

Any path specifier. None

MP_NEWJOB

-newjob

Whether or not the Partition Manager

maintains your partition for multiple job

steps.

yes no no

MP_PGMMODEL

-pgmmodel

The programming model you are using. spmd mpmd spmd

MP_SAVE_LLFILE

-save_llfile

When using LoadLeveler for node

allocation, the name of the output

LoadLeveler job command file to be

generated by the Partition Manager. The

output LoadLeveler job command file

will show the LoadLeveler settings that

result from the POE environment

variables and/or command-line options

for the current invocation of POE. If you

use the MP_SAVE_LLFILE environment

variable for a batch job, or when the

MP_LLFILE environment variable is set

(indicating that a LoadLeveler job

command file should participate in node

allocation), POE will show a warning and

will not save the output job command

file.

Any relative or full path

name.

None

Chapter 11. POE environment variables and command-line flags 73

Table 16. POE environment variables/command-line flags for job specification (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_TASK_AFFINITY

-task_affinity

This causes the PMD to attach each task

of a parallel job to one of the system

resource sets (rsets) at the MCM level,

thus constraining the task (and all its

threads) to run within that MCM. If the

task has an inherited resource set, the

attach honors the constraints of the

inherited resource set.

It is recommended that the user also set

the AIX environment variable

MEMORY_AFFINITY to MCM.

SNI Specifies that the

PMD select the

MCM to which the

first adapter

window is

attached.

MCM Specifies that the

PMD assigns tasks

on a round-robin

basis to the MCMs

in the inherited

resource set. If

WLM is not being

used, this is most

useful when a

node is being used

for only one job.

-1 Specifies that no

affinity request is

to be made.

mcm_list

Specifies a set of

system level

(LPAR) logical

MCMs that can be

attached to. Tasks

of this job will be

assigned

round-robin to this

set, within the

constraint of an

inherited rset, if

any. Any MCMs

outside the

constraint set will

be attempted, but

fail.

None

 Table 17. POE environment variables/command-line flags for I/O control

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_LABELIO

-labelio

Whether or not output from the parallel

tasks is labeled by task id.

yes no no (yes for pdbx)

74 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

|

|
|
|
|
|
|
|
|

|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 17. POE environment variables/command-line flags for I/O control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_STDINMODE

-stdinmode

The input mode. This determines how

input is managed for the parallel tasks.

all All tasks receive

the same input

data from STDIN.

none No tasks receive

input data from

STDIN; STDIN

will be used by the

home node only.

a task id

STDIN is only sent

to the task

identified.

all

MP_HOLD_STDIN

(no associated

command line flag)

Whether or not sending of STDIN from

the home node to the remote nodes is

deferred until the message passing

partition has been established.

yes no no

MP_STDOUTMODE

-stdoutmode

The output mode. This determines how

STDOUT is handled by the parallel tasks.

One of the following:

unordered

All tasks write

output data to

STDOUT

asynchronously.

ordered Output data from

each parallel task

is written to its

own buffer. Later,

all buffers are

flushed, in task

order, to STDOUT.

a task id

Only the task

indicated writes

output data to

STDOUT.

unordered

Chapter 11. POE environment variables and command-line flags 75

Table 18. POE environment variables/command-line flags for diagnostic information

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_INFOLEVEL

-infolevel U -ilevel U

The level of message reporting. One of the following

integers:

0 Error

1 Warning and error

2 Informational,

warning, and error

3 Informational,

warning, and

error. Also reports

high-level

diagnostic

messages for use

by the IBM

Support Center.

4, 5, 6 Informational,

warning, and

error. Also reports

high- and

low-level

diagnostic

messages for use

by the IBM

Support Center.

1

MP_PMDLOG

-pmdlog

Whether or not diagnostic messages

should be logged to a file in /tmp on each

of the remote nodes. Typically, this

environment variable/command-line flag

is only used under the direction of the

IBM Support Center in resolving a

PE-related problem.

yes no no

MP_DEBUG_INITIAL_

STOP

(no associated

command-line flag)

The initial breakpoint in the application

where pdbx will get control.

One of the following:

 “filename”:line_number

 function_name

The first

executable source

line in the main

routine.

MP_DEBUG_

NOTIMEOUT

-debug_notimeout

A debugging aid that allows

programmers to attach to one or more of

their tasks without the concern that some

other task may reach a timeout.

Any non-null string will

activate this flag.

no

 Table 19. POE environment variables and command-line flags for Message Passing Interface (MPI)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_ACK_THRESH

-ack_thresh

Allows the user to control the

packet acknowledgement

threshold. Specify a positive

integer.

A positive integer limited to 31 30

76 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|

|
|
|
|

Table 19. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_BUFFER_MEM

-buffer_mem

See “MP_BUFFER_MEM details” on page 82. 64 MB

(User Space)

2800000 bytes

(IP)

MP_CC_SCRATCH_BUF

-cc_scratch_buf

Use the fastest collective

communication algorithm even

if that algorithm requires

allocation of more scratch

buffer space.

yes

no

yes

MP_CLOCK_SOURCE

-clock_source

To use the high performance

switch clock as a time source.

See “Using a switch clock as a

time source” on page 34.

AIX

SWITCH

None. See

Table 3 on page

35.

MP_CSS_INTERRUPT

-css_interrupt

To specify whether or not

arriving packets generate

interrupts. Using this

environment variable may

provide better performance for

certain applications. Setting this

variable explicitly will suppress

the MPI-directed switching of

interrupt mode, leaving the

user in control for the rest of

the run. For more information,

see MPI_FILE_OPEN in IBM

Parallel Environment for AIX:

MPI Subroutine Reference.

yes

no

no

Chapter 11. POE environment variables and command-line flags 77

|
|
||
|
|
|

|
|
|
|
|
|
|

|

|

|

Table 19. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_EAGER_LIMIT

-eager_limit

To change the threshold value

for message size, above which

rendezvous protocol is used.

To ensure that at least 32

messages can be outstanding

between any two tasks,

MP_EAGER_LIMIT will be

adjusted based on the number

of tasks according to the

following table, when the user

has specified neither

MP_BUFFER_MEM nor

MP_EAGER_LIMIT:

Number of

Tasks MP_EAGER_LIMIT

 1 to 256 32768

 257 to 512 16384

 513 to 1024 8192

1025 to 2048 4096

2049 to 4096 2048

4097 to 8192 1024

The maximum value for

MP_EAGER_LIMIT is 256 KB

(262144 bytes). Any value that

is less than 64 bytes but greater

than zero bytes is automatically

increased to 64 bytes. A value

of zero bytes is valid, and

indicates that eager send mode

is not to be used for the job.

nnnnn

nnK (where:

K = 1024 bytes)

4096

MP_HINTS_FILTERED

-hints_filtered

To specify whether or not MPI

info objects reject hints (key and

value pairs) that are not

meaningful to the MPI

implementation.

yes

no

yes

MP_IONODEFILE

-ionodefile

To specify the name of a

parallel I/O node file — a text

file that lists the nodes that

should be handling parallel

I/O. Setting this variable

enables you to limit the number

of nodes that participate in

parallel I/O and guarantees

that all I/O operations are

performed on the same node.

Any relative path name or full

path name.

None. All

nodes will

participate in

parallel I/O.

MP_MSG_ENVELOPE_BUF

-msg_envelope_buf

The size of the message

envelope buffer (that is,

uncompleted send and receive

descriptors).

Any positive number. There is

no upper limit, but any value

less than 1 MB is ignored.

8 MB

MP_POLLING_INTERVAL

-polling_interval

To change the polling interval

(in microseconds).

An integer

between 1

and 2 billion

400000

78 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

|

Table 19. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_RETRANSMIT_INTERVAL

-retransmit_interval

MP_RETRANSMIT_

INTERVAL=nnnn and its

command line equivalent,

-retransmit_interval=nnnn,

control how often the

communication subsystem

library checks to see if it should

retransmit packets that have

not been acknowledged. The

value nnnn is the number of

polling loops between checks.

The acceptable range

is from 1000 to INT_MAX

10000 (IP)

400000

(User Space)

MP_LAPI_TRACE_LEVEL Used in conjunction with AIX

tracing for debug purposes.

Levels 0-5 are supported.

Levels 0-5 0

MP_USE_BULK_XFER

-use_bulk_xfer

Exploits the high performance

switch data transfer

mechanism. In other

environments, this variable

does not have any meaning and

is ignored.

Before you can use

MP_USE_BULK_XFER, the

system administrator must first

enable Remote Direct Memory

Access (RDMA). For more

information, see IBM Parallel

Environment for AIX: Installation.

In other environments, this

variable does not have any

meaning and is ignored.

Note that when you use this

environment variable, you also

need to consider the value of

the

MP_BULK_MIN_MSG_SIZE

environment variable. Messages

with lengths that are greater

than the value specified

MP_BULK_MIN_MSG_SIZE

will use the bulk transfer path,

if it is available. For more

information, see the entry for

MP_BULK_MIN_MSG_SIZE

in this table.

yes

no

no

Chapter 11. POE environment variables and command-line flags 79

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 19. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_BULK_MIN_MSG_SIZE

-bulk_min_msg_size

Contiguous messages with data

lengths greater than or equal to

the value you specify for this

environment variable will use

the bulk transfer path, if it is

available. Messages with data

lengths that are smaller than

the value you specify for this

environment variable, or are

noncontiguous, will use packet

mode transfer.

The acceptable range is from

4096 to 2147483647 (INT_MAX).

Possible values:
nnnnn (byte)

nnnK (where: K = 1024 bytes)

nnM (where:

 M = 1024*1024 bytes)

nnG (where:

 G = 1 billion bytes)

153600

MP_SHARED_MEMORY

-shared_memory

To specify the use of shared

memory (instead of IP or the

high performance switch) for

message passing between tasks

running on the same node.

Note: In past releases, the

MP_SHM_CC environment

variable was used to enable or

disable the use of shared

memory for certain 64-bit MPI

collective communication

operations. Beginning with the

PE 4.2 release, this environment

variable has been removed. You

should now use

MP_SHARED_MEMORY to

enable shared memory for both

collective communication and

point-to-point routines. The

default setting for

MP_SHARED_MEMORY is

yes (enable shared memory).

yes

no

yes

MP_SINGLE_THREAD

-single_thread

To avoid lock overheads in a

program that is known to be

single-threaded. MPE_I

non-blocking collective, MPI-IO

and MPI one-sided are

unavailable if this variable is

set to yes. Results are

undefined if this variable is set

to yes with multiple application

message passing threads in use.

yes

no

no

MP_THREAD_STACKSIZE

-thread_stacksize

To specify the additional stack

size allocated for user

subroutines running on an MPI

service thread. If you do not

allocate enough space, the

program may encounter a

SIGSEGV exception or more

subtle failures.

nnnnn

nnnK (where:

K = 1024 bytes)

nnM (where:

M = 1024*1024 bytes)

0

80 IBM PE for AIX 5L V4 R2: MPI Programming Guide

||
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 19. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_TIMEOUT

None

To change the length of time (in

seconds) the communication

subsystem will wait for a

connection to be established

during message-passing

initialization.

If the SP security method is

″dce and compatibility″, you

may need to increase the

MP_TIMEOUT value to allow

POE to wait for the DCE

servers to respond (or timeout

if the servers are down).

An integer greater than 0 150

MP_UDP_PACKET_SIZE

-udp_packet_size

Allows the user to control the

packet size. Specify a positive

integer.

A positive integer Switch 64k,

otherwise 8k

MP_WAIT_MODE

-wait_mode

Set: To specify how a thread or

task behaves when it discovers

it is blocked, waiting for a

message to arrive.

nopoll

poll

sleep

yield

poll (for User

Space and IP)

MP_IO_BUFFER_SIZE

-io_buffer_size

To specify the default size of

the data buffer used by MPI-IO

agents.

An integer less than or equal

to 128 MB, in one of these

formats:

nnnnn

nnnK (where K=1024 bytes)

nnnM (where M=1024*1024

bytes)

The number of

bytes that

corresponds to

16 file blocks.

MP_IO_ERRLOG

-io_errlog

To specify whether or not to

turn on I/O error logging.

yes

no

no

MP_REXMIT_BUF_SIZE

-rexmit_buf_size

The maximum LAPI level

message size that will be

buffered locally, to more

quickly free up the user send

buffer. This sets the size of the

local buffers that will be

allocated to store such

messages, and will impact

memory usage, while

potentially improving

performance. The MPI

application message size

supported is smaller by, at

most, 32 bytes.

nnn bytes (where:

nnn > 0 bytes)

16352 bytes

MP_REXMIT_BUF_CNT

-rexmit_buf_cnt

The number of retransmit

buffers that will be allocated

per task. Each buffer is of size

MP_REXMIT_BUF_SIZE *

MP_REXMIT_BUF_CNT. This

count controls the number of

in-flight messages that can be

buffered to allow prompt return

of application send buffers.

nnn (where:

nnn > 0)

128

Chapter 11. POE environment variables and command-line flags 81

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

MP_BUFFER_MEM details

Set:

To control the amount of memory PE MPI allows for the buffering of early arrival

message data. Message data that is sent without knowing if the receive is posted is

said to be sent eagerly. If the message data arrives before the receive is posted, this

is called an early arrival and must be buffered at the receive side.

There are two way this environment variable can be used:

1. To specify the pool size for memory to be allocated at MPI initialization time

and dedicated to buffering of early arrivals. Management of pool memory for

each early arrival is fast, which helps performance, but memory that is set

aside in this pool is not available for other uses. Eager sending is throttled by

PE MPI to be certain there will never be an early arrival that cannot fit within

the pool. (To throttle a car engine is to choke off its air and fuel intake by

lifting your foot from the gas pedal when you want to keep the car from going

faster than you can control).

2. To specify the pool size for memory to be allocated at MPI initialization time

and, with a second argument, an upper bound of memory to be used if the

pre-allocated pool is not sufficient. Eager sending is throttled to be certain there

will never be an early arrival that cannot fit within the upper bound. Any

early arrival will be stored in the pre-allocated pool using its faster memory

management if there is room, but if not, malloc and free will be used.

The constraints on eager send must be pessimistic because they must guarantee

an early arrival buffer no matter how the application behaves. Real applications

at large task counts may suffer performance loss due to pessimistic throttling of

eager sending, even though the application has only a modest need for early

arrival buffering.

Setting a higher bound allows more and larger messages to be sent eagerly. If

the application is well behaved, it is likely that the pre-allocated pool will

supply all the buffer space needed. If not, malloc and free will be used but

never beyond the stated upper bound.

Possible values:

nnnnn (byte)

nnnK (where: K = 1024 bytes)

nnM (where: M = 1024*1024 bytes)

nnG (where: G = 1 billion bytes)

Formats:

M1

M1,M2

,M2 (a comma followed by the M2 value)

M1 specifies the size of the pool to be allocated at initialization time. M1 must be

between 0 and 256 MB.

M2 specifies the upper bound of memory that PE MPI will allow to be used for

early arrival buffering in the most extreme case of sends without waiting receives.

PE MPI will throttle senders back to rendezvous protocol (stop trying to use eager

send) before allowing the early arrivals at a receive side to overflow the upper

bound.

82 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

There is no limit enforced on the value you can specify for M2, but be aware that a

program that does not behave as expected has the potential to malloc this much

memory, and terminate if it is not available.

When MP_BUFFER_MEM is allowed to default, or is specified with a single

argument, M1, the upper bound is set to the pool size, and eager sending will be

throttled soon enough at each sender to ensure that the buffer pool cannot

overflow at any receive side. If M2 is smaller than M1, M2 is ignored.

The format that omits M1 is used to tell PE MPI to use its default size

pre-allocated pool, but set the upper bound as specified with M2. This removes the

need for a user to remember the default M1 value when the intention is to only

change the M2 value.

It is expected that only jobs with hundreds of task will have any need to set M2.

For most of these jobs, there will be an M1,M2 setting that eliminates the need for

PE MPI to throttle eager sends, while allowing all early arrivals that the

application actually creates to be buffered within the pre-allocated pool.

 Table 20. POE environment variables/command-line flags for corefile generation

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_COREDIR

-coredir

Creates a separate directory for each

task’s core file.

Any valid directory name,

or ″none″ to bypass

creating a new directory.

coredir.taskid

MP_COREFILE_

FORMAT

-corefile_format

The format of corefiles generated when

processes terminate abnormally.

The string ″STDERR″ (to

specify that the lightweight

corefile information should

be written to standard

error) or any other string

(to specify the lightweight

corefile name).

If not

set/specified,

standard AIX

corefiles will be

generated.

MP_COREFILE_

SIGTERM

-corefile_sigterm

Determines if POE should generate a core

file when a SIGTERM signal is received.

Valid values are yes and no. If not set,

the default is no.

yes, no no

 Table 21. Other POE environment variables/command-line flags

The Environment

Variable/Command-Line

Flag(s): Set: Possible Values: Default:

MP_DBXPROMPTMOD (no

associated command-line

flag)

A modified dbx prompt. The dbx

prompt \n(dbx) is used by the pdbx

command as an indicator denoting

that a dbx subcommand has

completed. This environment

variable modifies that prompt. Any

value assigned to it will have a “.”

prepended and will then be inserted

in the \n(dbx) prompt between the

“x” and the “)”. This environment

variable is useful when the string

\n(dbx) is present in the output of

the program being debugged.

Any string. None

Chapter 11. POE environment variables and command-line flags 83

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Table 21. Other POE environment variables/command-line flags (continued)

The Environment

Variable/Command-Line

Flag(s): Set: Possible Values: Default:

MP_EUIDEVELOP

-euidevelop

Controls the level of parameter

checking during execution. Setting

this to yes enables some intertask

parameter checking which may help

uncover certain problems, but slows

execution. Normal mode does only

relatively inexpensive, local

parameter checking. Minimum

allows PE MPI to bypass even local

parameter checking on certain

performance critical calls.

yes (for “develop”), no or

nor (for “normal”), deb (for

“debug”) and min (for

“minimum”).

no

MP_STATISTICS

-statistics

Provides the ability to gather

communication statistics for User

Space jobs.

yes

no

print

no

MP_FENCE

(no associated

command-line flag)

A “fence” character string for

separating arguments you want

parsed by POE from those you do

not.

Any string. None

MP_NOARGLIST

(no associated

command-line flag)

Whether or not POE ignores the

argument list. If set to yes, POE will

not attempt to remove POE

command-line flags before passing

the argument list to the user’s

program.

yes no no

MP_PRIORITY

(no associated

command-line flag)

A dispatch priority class for

execution or a string of high/low

priority values. See IBM Parallel

Environment for AIX: Installation for

more information on dispatch

priority classes.

Any of the dispatch priority

classes set up by the system

administrator or a string of

high/low priority values in

the file /etc/poe.priority.

None

MP_PRINTENV

-printenv

Whether to produce a report of the

current settings of MPI environment

variables, across all tasks in a job. If

yes is specified, the MPI

environment variable information is

gathered at initialization time from

all tasks, and forwarded to task 0,

where the report is prepared. If a

script_name is specified, the script is

run on each node, and the output

script is forwarded to task 0 and

included in the report.

When a variable’s value is the same

for all tasks, it is printed only once.

If it is different for some tasks, an

asterisk (*) appears in the report

after the word ″Task″.

no Do not produce a

report of MPI

environment

variable settings.

yes Produce a report

of MPI

environment

variable settings.

script_name

Produce the report

(same as yes), then

run the script

specified here.

no

84 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 21. Other POE environment variables/command-line flags (continued)

The Environment

Variable/Command-Line

Flag(s): Set: Possible Values: Default:

MP_UTE

To include the UTE (Unified Trace

Environment) library in the link step,

allowing the user to collect data

from the application using PE

Benchmarker. For more information,

see IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

yes Include the UTE

library in the link

step.

no Do not include the

UTE library in the

link step.

no

Chapter 11. POE environment variables and command-line flags 85

|
|
|
|
|
|
|
|

||
|
|

||
|
|

86 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 12. Parallel utility subroutines

This chapter includes descriptions of the parallel utility subroutines that are

available for parallel programming. These user-callable, threadsafe subroutines take

advantage of the parallel operating environment (POE).

 Table 22. Parallel utility subroutines

Subroutine name Purpose

“mpc_isatty” on page 89 Determines whether a device is a terminal on the home

node.

“MP_BANDWIDTH, mpc_bandwidth” on page 91 Obtains user space switch bandwidth statistics.

“MP_DISABLEINTR, mpc_disableintr” on page 96 Disables message arrival interrupts on a node.

“MP_ENABLEINTR, mpc_enableintr” on page 99 Enables message arrival interrupts on a node.

“MP_FLUSH, mpc_flush” on page 102 Flushes task output buffers.

“MP_INIT_CKPT, mpc_init_ckpt” on page 104 Starts user-initiated checkpointing.

“MP_QUERYINTR, mpc_queryintr” on page 106 Returns the state of interrupts on a node.

“MP_QUERYINTRDELAY, mpc_queryintrdelay” on page

109

The original purpose of this routine was to return the

current interrupt delay time. This routine currently

returns zero.

“MP_SET_CKPT_CALLBACKS, mpc_set_ckpt_callbacks”

on page 110

Registers subroutines to be invoked when the application

is checkpointed, resumed, and restarted.

“MP_SETINTRDELAY, mpc_setintrdelay” on page 113 This function formerly set the delay parameter. It now

performs no action.

“MP_STATISTICS_WRITE, mpc_statistics_write” on page

114

Print both MPI and LAPI transmission statistics.

“MP_STATISTICS_ZERO, mpc_statistics_zero” on page

117

Resets (zeros) the MPCI_stats_t structure. It has no effect

on LAPI.

“MP_STDOUT_MODE, mpc_stdout_mode” on page 118 Sets the mode for STDOUT.

“MP_STDOUTMODE_QUERY, mpc_stdoutmode_query”

on page 121

Queries the current STDOUT mode setting.

“MP_UNSET_CKPT_CALLBACKS,

mpc_unset_ckpt_callbacks” on page 123

Unregisters checkpoint, resume, and restart application

callbacks.

“pe_dbg_breakpoint” on page 125 Provides a communication mechanism between Parallel

Operating Environment (POE) and an attached third

party debugger (TPD).

“pe_dbg_checkpnt” on page 131 Checkpoints a process that is under debugger control, or

a group of processes.

“pe_dbg_checkpnt_wait” on page 135 Waits for a checkpoint, or pending checkpoint file I/O, to

complete.

“pe_dbg_getcrid” on page 137 Returns the checkpoint/restart ID.

“pe_dbg_getrtid” on page 138 Returns real thread ID of a thread in a specified process

given its virtual thread ID.

“pe_dbg_getvtid” on page 139 Returns virtual thread ID of a thread in a specified

process given its real thread ID.

“pe_dbg_read_cr_errfile” on page 140 Opens and reads information from a checkpoint or

restart error file.

© Copyright IBM Corp. 1993, 2005 87

||

||

||
|

||

||

||

||

||

||

|
|
|
|
|

|
|
|
|

||
|

|
|
|

|
|
|
|

||

|
|
|

|
|
|
|

||
|
|

||
|

||
|

||

||
|

||
|

||
|

Table 22. Parallel utility subroutines (continued)

Subroutine name Purpose

“pe_dbg_restart” on page 141 Restarts processes from a checkpoint file.

mpc_isatty

88 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|

||

||
|

mpc_isatty

Purpose

Determines whether a device is a terminal on the home node.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_isatty(int FileDescriptor);

Description

This parallel utility subroutine determines whether the file descriptor specified by

the FileDescriptor parameter is associated with a terminal device on the home node.

In a parallel operating environment partition, these three file descriptors are

implemented as pipes to the partition manager daemon. Therefore, the AIX isatty()

subroutine will always return false for each of them. This subroutine is provided

for use by remote tasks that may want to know whether one of these devices is

actually a terminal on the home node, for example, to determine whether or not to

output a prompt.

Parameters

FileDescriptor

is the file descriptor number of the device. Valid values are:

0 or STDIN

Specifies STDIN as the device to be checked.

1 or STDOUT

Specifies STDOUT as the device to be checked.

2 or STDERR

Specifies STDERR as the device to be checked.

Notes

This subroutine has a C version only. Also, it is thread safe.

Return values

In C and C++ calls, the following applies:

0 Indicates that the device is not associated with a terminal on the home

node.

1 Indicates that the device is associated with a terminal on the home node.

-1 Indicates an invalid FileDescriptor parameter.

Examples

C Example

/*

 * Running this program, after compiling with mpcc_r,

 * without redirecting STDIN, produces the following output:

 *

 * isatty() reports STDIN as a non-terminal device

mpc_isatty

Chapter 12. Parallel utility subroutines 89

* mpc_isatty() reports STDIN as a terminal device

 */

#include "pm_util.h"

main()

{

 if (isatty(STDIN)) {

 printf("isatty() reports STDIN as a terminal device\n");

 } else {

 printf("isatty() reports STDIN as a non-terminal device\n");

 if (mpc_isatty(STDIN)) {

 printf("mpc_isatty() reports STDIN as a terminal device\n");

 } else {

 printf("mpc_isatty() reports STDIN as a non-terminal device\n");

 }

 }

}

mpc_isatty

90 IBM PE for AIX 5L V4 R2: MPI Programming Guide

MP_BANDWIDTH, mpc_bandwidth

Purpose

Obtains user space switch bandwidth statistics.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

#include <lapi.h>

int mpc_bandwidth(lapi_handle_t hndl, int flag, bw_stat_t *bw);

FORTRAN synopsis

MP_BANDWIDTH(INTEGER HNDL, INTEGER FLAG, INTEGER*8 BW_SENT, INTEGER*8 BW_RECV,

 INTEGER*8 BW_TIME_SEC, INTEGER*4 BW_TIME_USEC, INTEGER RC)

Description

This parallel utility subroutine is a wrapper API program that users can call to

obtain the user space switch bandwidth statistics. LAPI’s Query interface is used to

obtain byte counts of the data sent and received. This routine returns the byte

counts and time values to allow the bandwidth to be calculated.

For C and C++ language programs, this routine uses a structure that contains the

data count fields, as well as time values in both seconds and microseconds. These

are filled in at the time of the call, from the data obtained by the LAPI Query

interface and a ″get time of day″ call.

This routine requires a valid LAPI handle for LAPI programs. For MPI programs,

the handle is not required. A flag parameter is required to indicate whether the call

has been made from an MPI or LAPI program.

If the program is a LAPI program, the flag MP_BW_LAPI must be set and the

handle value must be specified. If the program is an MPI program, the flag

MP_BW_MPI must be set, and any handle specified is ignored.

In the case where a program uses both MPI and LAPI in the same program, where

MP_MSG_API is set to either mpi,lapi or mpi_lapi, separate sets of statistics are

maintained for the MPI and LAPI portions of the program. To obtain the MPI

bandwidth statistics, this routine must be called with the MP_BW_MPI flag, and

any handle specified is ignored. To obtain the LAPI bandwidth statistics, this

routine must be called with the MP_BW_LAPI flag and a valid LAPI handle value.

Parameters

In C, bw is a pointer to a bw_stat_t structure. This structure is defined as:

typedef struct{

 unsigned long long switch_sent;

 unsigned long long switch_recv;

 int64_t time_sec;

 int32_t time_usec;

} bw_stat_t;

where:

MP_BANDWIDTH

Chapter 12. Parallel utility subroutines 91

|
|

|

|

|

|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|
|

|

switch_sent is an unsigned long long value of the number of bytes sent.

switch_recv is an unsigned long long value of the number of bytes received.

time_sec is a 64-bit integer value of time in seconds.

time_usec is a 32-bit integer value of time in microseconds.

In FORTRAN:

BW_SENT is a 64-bit integer value of the number of bytes sent.

BW_RECV is a 64-bit integer value of the number of bytes received.

BW_TIME_SEC

is a 64-bit integer time value of time in seconds.

BW_TIME_USEC

is a 32-bit integer time value of time in microseconds.

Flag is either MP_BW_MPI or MP_BW_LAPI, indicating whether the program is

using MPI or LAPI.

Bw_data is a pointer to the bandwidth data structure, that will include the

timestamp and bandwidth data count of sends and receives as requested. The

bandwidth data structure may be declared and passed locally by the calling

program.

Hndl is a valid LAPI handle filled in by a LAPI_Init() call for LAPI programs. For

MPI programs, this is ignored.

RC in FORTRAN, will contain an integer value returned by this function. This

should always be the last parameter.

Notes

1. The send and receive data counts are for bandwidth data at the software level

of current tasks running, and not what the adapter is capable of.

2. Intranode communication using shared memory will specifically not be

measured with this API. Likewise, this API does not return values of the

bandwidth of local data sent to itself.

3. In the case with striping over multiple adapters, the data counts are an

aggregate of the data exchanged at the application level, and not on a

per-adapter basis.

Return values

0 Indicates successful completion.

-1 Incorrect flag (not MP_BW_MPI or MP_BW_LAPI).

greater than 0

See the list of LAPI error codes in IBM RSCT: LAPI Programming Guide.

Examples

C Examples

1. To determine the bandwidth in an MPI program:

#include <mpi.h>

#include <time.h>

#include <lapi.h>

MP_BANDWIDTH

92 IBM PE for AIX 5L V4 R2: MPI Programming Guide

||

||

||

||

|

||

||

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|

||

||

|
|

|

|

|

|
|
|

#include <pm_util.h>

int rc;

main(int argc, char *argv[])

{

 bw_stat_t bw_in;

 MPI_Init(&argc, &argv);

 .

 .

 .

 /* start collecting bandwidth .. */

 rc = mpc_bandwidth(NULL, MP_BW_MPI, &bw_in);

 .

 .

 .

 printf("Return from mpc_bandwidth ...rc = %d.\n",rc);

 printf("Bandwidth of data sent: %lld.\n",

 bw_in.switch_sent);

 printf("Bandwidth of data recv: %lld.\n",

 bw_in.switch_recv);

 printf("time(seconds): %lld.\n",bw_in.time_sec);

 printf("time(mseconds): %d.\n",bw_in->time_usec);

 .

 .

 .

 MPI_Finalize();

 exit(rc);

}

2. To determine the bandwidth in a LAPI program:

#include <lapi.h>

#include <time.h>

#include <pm_util.h>

int rc;

main(int argc, char *argv[])

{

 lapi_handle_t hndl;

 lapi_info_t info;

 bw_stat_t work;

 bw_stat_t bw_in;

 bzero(&info, sizeof(lapi_info_t));

 rc = LAPI_Init(&hndl, &info);

 .

 .

 .

 rc = mpc_bandwidth(hndl, MP_BW_LAPI, &bw_in);

 .

 .

 .

 printf("Return from mpc_bandwidth ...rc = %d.\n",rc);

 printf("Bandwidth of data sent: %lld.\n",

 bw_in.switch_sent);

 printf("Bandwidth of data recv: %lld.\n",

 bw_in.switch_recv);

 printf("time(seconds): %lld.\n", bw_in.time_sec);

 printf("time(mseconds): %d.\n",bw_in.time_usec);

 .

 .

 .

 LAPI_Term(hndl);

 exit(rc);

}

FORTRAN Examples

1. To determine the bandwidth in an MPI program:

MP_BANDWIDTH

Chapter 12. Parallel utility subroutines 93

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

program bw_mpi

 include "mpif.h"

 include "lapif.h"

 integer retcode

 integer taskid

 integer numtask

 integer hndl

 integer*8 bw_secs

 integer*4 bw_usecs

 integer*8 bw_sent_data

 integer*8 bw_recv_data

 .

 .

 .

 call mpi_init(retcode)

 call mpi_comm_rank(mpi_comm_world, taskid, retcode)

 write (6,*) ’Taskid is ’,taskid

 .

 .

 .

 call mp_bandwidth(hndl,MP_BW_MPI, bw_sent_data, bw_recv_data, bw_secs,

 bw_usecs,retcode)

 write (6,*) ’MPI_BANDWIDTH returned. Time (sec) is ’,bw_secs

 write (6,*) ’ Time (usec) is ’,bw_usecs

 write (6,*) ’ Data sent (bytes): ’,bw_sent_data

 write (6,*) ’ Data received (bytes): ’,bw_sent_recv

 write (6,*) ’ Return code: ’,retcode

 .

 .

 .

 call mpi_barrier(mpi_comm_world,retcode)

 call mpi_finalize(retcode)

2. To determine the bandwidth in a LAPI program:

 program bw_lapi

 include "mpif.h"

 include "lapif.h"

 TYPE (LAPI_INFO_T) :: lapi_info

 integer retcode

 integer taskid

 integer numtask

 integer hndl

 integer*8 bw_secs

 integer*4 bw_usecs

 integer*8 bw_sent_data

 integer*8 bw_recv_data

 .

 .

 .

 call lapi_init(hndl, lapi_info, retcode)

 .

 .

 .

 call mp_bandwidth(hndl,MP_BW_LAPI, bw_sent_data, bw_recv_data, bw_secs,

 bw_usecs,retcode)

 write (6,*) ’MPI_BANDWIDTH returned. Time (sec) is ’,bw_secs

 write (6,*) ’ Time (usec) is ’,bw_usecs

 write (6,*) ’ Data sent (bytes): ’,bw_sent_data

 write (6,*) ’ Data received (bytes): ’,bw_sent_recv

 write (6,*) ’ Return code: ’,retcode

 .

 .

 .

 call lapi_term(hndl,retcode)

MP_BANDWIDTH

94 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Related information

Commands:

v mpcc_r

v mpCC_r

v mpxlf_r

v mpxlf90_r

v mpxlf95_r

Subroutines:

v MP_STATISTICS_WRITE, mpc_statistics_write

v MP_STATISTICS_ZERO, mpc_statistics_zero

MP_BANDWIDTH

Chapter 12. Parallel utility subroutines 95

|

|

|

|

|

|

|

|

|

|

MP_DISABLEINTR, mpc_disableintr

Purpose

Disables message arrival interrupts on a node.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_disableintr();

FORTRAN synopsis

MP_DISABLEINTR(INTEGER RC)

Description

This parallel utility subroutine disables message arrival interrupts on the

individual node on which it is run. Use this subroutine to dynamically control

masking interrupts on a node.

Parameters

In FORTRAN, RC will contain one of the values listed under Return Values.

Notes

v This subroutine is only effective when the communication subsystem is active.

This is from MPI_INIT to MPI_FINALIZE. If this subroutine is called when the

subsystem is inactive, the call will have no effect and the return code will be -1.

v This subroutine overrides the setting of the environment variable

MP_CSS_INTERRUPT.

v Inappropriate use of the interrupt control subroutines may reduce performance.

v This subroutine can be used for IP and User Space protocols.

v This subroutine is thread-safe.

v Using this subroutine will suppress the MPI-directed switching of interrupt

mode, leaving the user in control for the rest of the run. See MPI_FILE_OPEN

and MPI_WIN_CREATE in IBM Parallel Environment for AIX: MPI Subroutine

Reference.

Return values

0 Indicates successful completion.

-1 Indicates that the MPI library was not active. The call was either made

before MPI_INIT or after MPI_FINALIZE.

Examples

C Example

/*

 * Running this program, after compiling with mpcc_r,

 * without setting the MP_CSS_INTERRUPT environment variable,

 * and without using the "-css_interrupt" command-line option,

 * produces the following output:

MP_DISABLEINTR

96 IBM PE for AIX 5L V4 R2: MPI Programming Guide

*

 * Interrupts are DISABLED

 * About to enable interrupts..

 * Interrupts are ENABLED

 * About to disable interrupts...

 * Interrupts are DISABLED

 */

#include "pm_util.h"

#define QUERY if (intr = mpc_queryintr()) {\

 printf("Interrupts are ENABLED\n");\

 } else {\

 printf("Interrupts are DISABLED\n");\

 }

main()

{

 int intr;

 QUERY

 printf("About to enable interrupts...\n");

 mpc_enableintr();

 QUERY

 printf("About to disable interrupts...\n");

 mpc_disableintr();

 QUERY

}

FORTRAN Example

Running the following program, after compiling with mpxlf_r, without setting the

MP_CSS_INTERRUPT environment variable, and without using the -css_interrupt

command-line option, produces the following output:

 Interrupts are DISABLED

 About to enable interrupts..

 Interrupts are ENABLED

 About to disable interrupts...

 Interrupts are DISABLED

 PROGRAM INTR_EXAMPLE

 INTEGER RC

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

 WRITE(6,*)’About to enable interrupts...’

 CALL MP_ENABLEINTR(RC)

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

MP_DISABLEINTR

Chapter 12. Parallel utility subroutines 97

WRITE(6,*)’About to disable interrupts...’

 CALL MP_DISABLEINTR(RC)

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

 STOP

 END

Related information

Subroutines:

v MP_ENABLEINTR, mpc_enableintr

v MP_QUERYINTR, mpc_queryintr

MP_DISABLEINTR

98 IBM PE for AIX 5L V4 R2: MPI Programming Guide

MP_ENABLEINTR, mpc_enableintr

Purpose

Enables message arrival interrupts on a node.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_enableintr();

FORTRAN synopsis

MP_ENABLEINTR(INTEGER RC)

Description

This parallel utility subroutine enables message arrival interrupts on the individual

node on which it is run. Use this subroutine to dynamically control masking

interrupts on a node.

Parameters

In FORTRAN, RC will contain one of the values listed under Return Values.

Notes

v This subroutine is only effective when the communication subsystem is active.

This is from MPI_INIT to MPI_FINALIZE. If this subroutine is called when the

subsystem is inactive, the call will have no effect and the return code will be -1.

v This subroutine overrides the setting of the environment variable

MP_CSS_INTERRUPT.

v Inappropriate use of the interrupt control subroutines may reduce performance.

v This subroutine can be used for IP and User Space protocols.

v This subroutine is thread safe.

v Using this subroutine will suppress the MPI-directed switching of interrupt

mode, leaving the user in control for the rest of the run. See MPI_FILE_OPEN

and MPI_WIN_CREATE in IBM Parallel Environment for AIX: MPI Subroutine

Reference.

Return values

0 Indicates successful completion.

-1 Indicates that the MPI library was not active. The call was either made

before MPI_INIT or after MPI_FINALIZE.

Examples

C Example

/*

 * Running this program, after compiling with mpcc_r,

 * without setting the MP_CSS_INTERRUPT environment variable,

 * and without using the "-css_interrupt" command-line option,

 * produces the following output:

MP_ENABLEINTR

Chapter 12. Parallel utility subroutines 99

*

 * Interrupts are DISABLED

 * About to enable interrupts..

 * Interrupts are ENABLED

 * About to disable interrupts...

 * Interrupts are DISABLED

 */

#include "pm_util.h"

#define QUERY if (intr = mpc_queryintr()) {\

 printf("Interrupts are ENABLED\n");\

 } else {\

 printf("Interrupts are DISABLED\n");\

 }

main()

{

 int intr;

 QUERY

 printf("About to enable interrupts...\n");

 mpc_enableintr();

 QUERY

 printf("About to disable interrupts...\n");

 mpc_disableintr();

 QUERY

}

FORTRAN Example

Running this program, after compiling with mpxlf_r, without setting the

MP_CSS_INTERRUPT environment variable, and without using the -css_interrupt

command-line option, produces the following output:

 Interrupts are DISABLED

 About to enable interrupts..

 Interrupts are ENABLED

 About to disable interrupts...

 Interrupts are DISABLED

 PROGRAM INTR_EXAMPLE

 INTEGER RC

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

 WRITE(6,*)’About to enable interrupts...’

 CALL MP_ENABLEINTR(RC)

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

MP_ENABLEINTR

100 IBM PE for AIX 5L V4 R2: MPI Programming Guide

WRITE(6,*)’About to disable interrupts...’

 CALL MP_DISABLEINTR(RC)

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

 STOP

 END

Related information

Subroutines:

v MP_DISABLEINTR, mpc_disableintr

v MP_QUERYINTR, mpc_queryintr

MP_ENABLEINTR

Chapter 12. Parallel utility subroutines 101

MP_FLUSH, mpc_flush

Purpose

Flushes task output buffers.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_flush(int option);

FORTRAN synopsis

MP_FLUSH(INTEGER OPTION)

Description

This parallel utility subroutine flushes output buffers from all of the parallel tasks

to STDOUT at the home node. This is a synchronizing call across all parallel tasks.

If the current STDOUT mode is ordered, then when all tasks have issued this call

or when any of the output buffers are full:

1. All STDOUT buffers are flushed and put out to the user screen (or redirected)

in task order.

2. An acknowledgement is sent to all tasks and control is returned to the user.

If current STDOUT mode is unordered and all tasks have issued this call, all

output buffers are flushed and put out to the user screen (or redirected).

If the current STDOUT mode is single and all tasks have issued this call, the

output buffer for the current single task is flushed and put out to the user screen

(or redirected).

Parameters

option is an AIX file descriptor. The only valid value is:

1 Indicates to flush STDOUT buffers.

Notes

v This is a synchronizing call regardless of the current STDOUT mode.

v All STDOUT buffers are flushed at the end of the parallel job.

v If mpc_flush is not used, standard output streams not terminated with a

new-line character are buffered, even if a subsequent read to standard input is

made. This may cause prompt message to appear only after input has been read.

v This subroutine is thread safe.

Return values

In C and C++ calls, the following applies:

0 Indicates successful completion

MP_FLUSH

102 IBM PE for AIX 5L V4 R2: MPI Programming Guide

-1 Indicates that an error occurred. A message describing the error will be

issued.

Examples

C Example

The following program uses poe with the -labelio yes option and three tasks:

 #include <pm_util.h>

main()

{

 mpc_stdout_mode(STDIO_ORDERED);

 printf("These lines will appear in task order\n");

 /*

 * Call mpc_flush here to make sure that one task

 * doesn’t change the mode before all tasks have

 * sent the previous printf string to the home node.

 */

 mpc_flush(1);

 mpc_stdout_mode(STDIO_UNORDERED);

 printf("These lines will appear in the order received by the home node\n");

 /*

 * Since synchronization is not used here, one task could actually

 * execute the next statement before one of the other tasks has

 * executed the previous statement, causing one of the unordered

 * lines not to print.

 */

 mpc_stdout_mode(1);

 printf("Only 1 copy of this line will appear from task 1\n");

}

Running this C program produces the following output (the task order of lines 4

through 6 may differ):

v 0 : These lines will appear in task order.

v 1 : These lines will appear in task order.

v 2 : These lines will appear in task order.

v 1 : These lines will appear in the order received by the home node.

v 2 : These lines will appear in the order received by the home node.

v 0 : These lines will appear in the order received by the home node.

v 1 : Only 1 copy of this line will appear from task 1.

FORTRAN Example

CALL MP_STDOUT_MODE(-2)

WRITE(6, *) ’These lines will appear in task order’

CALL MP_FLUSH(1)

CALL MP_STDOUT_MODE(-3)

WRITE(6, *) ’These lines will appear in the order received by the home node’

CALL MP_STDOUT_MODE(1)

WRITE(6, *) ’Only 1 copy of this line will appear from task 1’

END

Related information

Subroutines:

v MP_STDOUT_MODE, mpc_stdout_mode

v MP_STDOUTMODE_QUERY, mpc_stdoutmode_query

MP_FLUSH

Chapter 12. Parallel utility subroutines 103

MP_INIT_CKPT, mpc_init_ckpt

Purpose

Starts user-initiated checkpointing.

Library

libmpi_r.a

C synopsis

#include <pm_ckpt.h>

int mpc_init_ckpt(int flags);

FORTRAN synopsis

i = MP_INIT_CKPT(%val(j))

Description

MP_INIT_CKPT starts complete or partial user-initiated checkpointing. The

checkpoint file name consists of the base name provided by the MP_CKPTFILE

and MP_CKPTDIR environment variables, with a suffix of the task ID and a

numeric checkpoint tag to differentiate it from an earlier checkpoint file.

If the MP_CKPTFILE environment variable is not specified, a default base name is

constructed: poe.ckpt.tag, where tag is an integer that allows multiple versions of

checkpoint files to exist. The file name specified by MP_CKPTFILE may include

the full path of where the checkpoint files will reside, in which case the

MP_CKPTDIR variable is to be ignored. If MP_CKPTDIR is not defined and

MP_CKPTFILE does not specify a full path name, MP_CKPTFILE is used as a

relative path name from the original working directory of the task.

Parameters

In C, flags can be set to MP_CUSER, which indicates complete user-initiated

checkpointing, or MP_PUSER, which indicates partial user-initiated checkpointing.

In FORTRAN, j should be set to 0 (the value of MP_CUSER) or 1 (the value of

MP_PUSER).

Notes

Complete user-initiated checkpointing is a synchronous operation. All tasks of the

parallel program must call MP_INIT_CKPT. MP_INIT_CKPT suspends the calling

thread until all other tasks have called it (MP_INIT_CKPT). Other threads in the

task are not suspended. After all tasks of the application have issued

MP_INIT_CKPT, a local checkpoint is taken of each task.

In partial user-initiated checkpointing, one task of the parallel program calls

MP_INIT_CKPT, thus invoking a checkpoint on the entire application. A

checkpoint is performed asychronously on all other tasks. The thread that called

MP_INIT_CKPT is suspended until the checkpoint is taken. Other threads in the

task are not suspended.

Upon returning from the MP_INIT_CKPT call, the application continues to run. It

may, however, be a restarted application that is now running, rather than the

original, if the program was restarted from a checkpoint file.

MP_INIT_CKPT

104 IBM PE for AIX 5L V4 R2: MPI Programming Guide

In a case where several threads in a task call MP_INIT_CKPT using the same flag,

the calls are serialized.

The task that calls MP_INIT_CKPT does not need to be an MPI program.

There are certain limitations associated with checkpointing an application. See

“Checkpoint and restart limitations” on page 39 for more information.

For general information on checkpointing and restarting programs, see IBM Parallel

Environment for AIX: Operation and Use, Volume 1.

For more information on the use of LoadLeveler and checkpointing, see IBM

LoadLeveler for AIX 5L: Using and Administering.

Return values

0 Indicates successful completion.

1 Indicates that a restart operation occurred.

-1 Indicates that an error occurred. A message describing the error will be

issued.

Examples

C Example

#include <pm_ckpt.h>

int mpc_init_ckpt(int flags);

FORTRAN Example

i = MP_INIT_CKPT(%val(j))

Related information

Commands:

v poeckpt

v poerestart

Subroutines:

v MP_SET_CKPT_CALLBACKS, mpc_set_ckpt_callbacks

v MP_UNSET_CKPT_CALLBACKS, mpc_unset_ckpt_callbacks

MP_INIT_CKPT

Chapter 12. Parallel utility subroutines 105

MP_QUERYINTR, mpc_queryintr

Purpose

Returns the state of interrupts on a node.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_queryintr();

FORTRAN synopsis

MP_QUERYINTR(INTEGER RC)

Description

This parallel utility subroutine returns the state of interrupts on a node.

Parameters

In FORTRAN, RC will contain one of the values listed under Return Values.

Notes

This subroutine is thread safe.

Return values

0 Indicates that interrupts are disabled on the node from which this

subroutine is called.

1 Indicates that interrupts are enabled on the node from which this

subroutine is called.

Examples

C Example

/*

 * Running this program, after compiling with mpcc_r,

 * without setting the MP_CSS_INTERRUPT environment variable,

 * and without using the "-css_interrupt" command-line option,

 * produces the following output:

 *

 * Interrupts are DISABLED

 * About to enable interrupts..

 * Interrupts are ENABLED

 * About to disable interrupts...

 * Interrupts are DISABLED

 */

#include "pm_util.h"

#define QUERY if (intr = mpc_queryintr()) {\

 printf("Interrupts are ENABLED\n");\

 } else {\

 printf("Interrupts are DISABLED\n");\

 }

MP_QUERYINTR

106 IBM PE for AIX 5L V4 R2: MPI Programming Guide

main()

{

 int intr;

 QUERY

 printf("About to enable interrupts...\n");

 mpc_enableintr();

 QUERY

 printf("About to disable interrupts...\n");

 mpc_disableintr();

 QUERY

}

FORTRAN Example

Running this program, after compiling with mpxlf_r, without setting the

MP_CSS_INTERRUPT environment variable, and without using the -css_interrupt

command-line option, produces the following output:

 Interrupts are DISABLED

 About to enable interrupts..

 Interrupts are ENABLED

 About to disable interrupts...

 Interrupts are DISABLED

 PROGRAM INTR_EXAMPLE

 INTEGER RC

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

 WRITE(6,*)’About to enable interrupts...’

 CALL MP_ENABLEINTR(RC)

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

 WRITE(6,*)’About to disable interrupts...’

 CALL MP_DISABLEINTR(RC)

 CALL MP_QUERYINTR(RC)

 IF (RC .EQ. 0) THEN

 WRITE(6,*)’Interrupts are DISABLED’

 ELSE

 WRITE(6,*)’Interrupts are ENABLED’

 ENDIF

 STOP

 END

MP_QUERYINTR

Chapter 12. Parallel utility subroutines 107

Related information

Subroutines:

v MP_DISABLEINTR, mpc_disableintr

v MP_ENABLEINTR, mpc_enableintr

MP_QUERYINTR

108 IBM PE for AIX 5L V4 R2: MPI Programming Guide

MP_QUERYINTRDELAY, mpc_queryintrdelay

Purpose

Note

This function is no longer supported and its future use is not recommended.

The routine remains available for binary compatibility. If invoked, it performs

no action and always returns zero. Applications that include calls to this

routine should continue to function as before. We suggest that calls to this

routine be removed from source code if it becomes convenient to do so.

The original purpose of this routine was to return the current interrupt delay

time. This routine currently returns zero.

MP_QUERYINTRDELAY

Chapter 12. Parallel utility subroutines 109

|
|
|
|
|

|
|

MP_SET_CKPT_CALLBACKS, mpc_set_ckpt_callbacks

Purpose

Registers subroutines to be invoked when the application is checkpointed,

resumed, and restarted.

Library

libmpi_r.a

C synopsis

#include <pm_ckpt.h>

int mpc_set_ckpt_callbacks(callbacks_t *cbs);

FORTRAN synopsis

MP_SET_CKPT_CALLBACKS(EXTERNAL CHECKPOINT_CALLBACK_FUNC,

 EXTERNAL RESUME_CALLBACK_FUNC,

 EXTERNAL RESTART_CALLBACK_FUNC,

 INTEGER RC)

Description

The MP_SET_CKPT_CALLBACKS subroutine is called to register subroutines to be

invoked when the application is checkpointed, resumed, and restarted.

Parameters

In C, cbs is a pointer to a callbacks_t structure. The structure is defined as:

typedef struct {

void (*checkpoint_callback)(void);

void (*restart_callback)(void);

void (*resume_callback)(void);

} callbacks_t;

where:

checkpoint_callback Points to the subroutine to be called at checkpoint

time.

restart_callback Points to the subroutine to be called at restart time.

resume_callback Points to the subroutine to be called when an

application is resumed after taking a checkpoint.

In FORTRAN:

CHECKPOINT_CALLBACK_FUNC

Specifies the subroutine to be called at checkpoint

time.

RESUME_CALLBACK_FUNC Specifies the subroutine to be called when an

application is resumed after taking a checkpoint.

RESTART_CALLBACK_FUNC Specifies the subroutine to be called at restart time.

RC Contains one of the values listed under Return

Values .

MP_SET_CKPT_CALLBACKS

110 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Notes

In order to ensure their completion, the callback subroutines cannot be dependent

on the action of any other thread in the current process, or any process created by

the task being checkpointed, because these threads or processes or both may or

may not be running while the callback subroutines are executing.

The callback subroutines cannot contain calls to:

1. MP_SET_CKPT_CALLBACKS, MP_UNSET_CKPT_CALLBACKS,

mpc_set_ckpt_callbacks, or mpc_unset_ckpt_callbacks.

2. Any MPI or LAPI subroutines

If a call to MP_SET_CKPT_CALLBACKS is issued while a checkpoint is in

progress, it is possible that the newly-registered callback may or may not run

during this checkpoint.

There are certain limitations associated with checkpointing an application. See

“Checkpoint and restart limitations” on page 39 for more information.

For general information on checkpointing and restarting programs, see IBM Parallel

Environment for AIX: Operation and Use, Volume 1.

For more information on the use of LoadLeveler and checkpointing, see IBM

LoadLeveler for AIX 5L: Using and Administering.

Return values

-1 Indicates that an error occurred. A message describing the error will be

issued.

non-negative integer

Indicates the handle that is to be used in MP_UNSET_CKPT_CALLBACKS

to unregister the subroutines.

Examples

C Example

#include <pm_ckpt.h>

int ihndl;

callbacks_t cbs;

void foo(void);

void bar(void);

cbs.checkpoint_callback=foo;

cbs.resume_callback=bar;

cbs.restart_callback=bar;

ihndl = mpc_set_ckpt_callbacks(callbacks_t *cbs);

FORTRAN Example

SUBROUTINE FOO ...
RETURN

END

SUBROUTINE BAR ...
RETURN

END

PROGRAM MAIN

EXTERNAL FOO, BAR

INTEGER HANDLE, RC

MP_SET_CKPT_CALLBACKS

Chapter 12. Parallel utility subroutines 111

...
CALL MP_SET_CKPT_CALLBACKS(FOO,BAR,BAR,HANDLE)

IF (HANDLE .NE. 0) STOP 666 ...
CALL MP_UNSET_CKPT_CALLBACKS(HANDLE,RC) ...
END

Related information

Commands:

v poeckpt

v poerestart

Subroutines:

v MP_INIT_CKPT, mpc_init_ckpt

v MP_UNSET_CKPT_CALLBACKS, mpc_unset_ckpt_callbacks

MP_SET_CKPT_CALLBACKS

112 IBM PE for AIX 5L V4 R2: MPI Programming Guide

MP_SETINTRDELAY, mpc_setintrdelay

Purpose

Note

This function is no longer supported and its future use is not recommended.

The routine remains available for binary compatibility. If invoked, it performs

no action and always returns zero. Applications that include calls to this

routine should continue to function as before. We suggest that calls to this

routine be removed from source code if it becomes convenient to do so.

This function formerly set the delay parameter. It now performs no action.

MP_SETINTRDELAY

Chapter 12. Parallel utility subroutines 113

|
|
|
|
|

|

MP_STATISTICS_WRITE, mpc_statistics_write

Description

Print both MPI and LAPI transmission statistics.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_statistics_write(FILE *fp);

FORTRAN synopsis

MP_STATISTICS_WRITE(INTEGER FILE_DESCRIPTOR, INTEGER RC)

Description

If the MP_STATISTICS environment variable is set to yes, MPI will keep a

running total on a set of statistical data. If an application calls this function after

MPI_INIT is completed, but before MPI_FINALIZE is called, it will print out the

current total of all available MPI and LAPI data. If this function is called after

MPI_FINALIZE is completed, it will print out only the final MPI data.

Note: LAPI will always keep its own statistical total with or without having

MP_STATISTICS set.

This function can be added to an MPI program to check communication progress.

However, keeping statistical data costs computing cycles, and may impair

bandwidth.

In the output, each piece of MPI statistical data is preceded by MPI, and each

piece of LAPI statistical data is preceded by LAPI.

The MPCI_stats_t structure contains this statistical information, which is printed

out:

sends Count of sends initiated.

sendsComplete Count of sends completed (message sent).

sendWaitsComplete Count of send waits completed (blocking and

non-blocking).

recvs Count of receives initiated.

recvWaitsComplete Count of receive waits complete.

earlyArrivals Count of messages received for which no receive

was posted.

earlyArrivalsMatched Count of early arrivals for which a posted receive

has been found.

lateArrivals Count of messages received for which a receive

was posted.

shoves Count of calls to lapi_send_msg.

pulls Count of calls to lapi_recv and lapi_recv_vec.

MP_STATISTICS_WRITE

114 IBM PE for AIX 5L V4 R2: MPI Programming Guide

threadedLockYields Count of lock releases due to waiting threads.

unorderedMsgs Count of the total number of out of order

messages.

buffer_mem_hwmark The peak of the memory usage of buffer_memory

for the early arrivals.

 If the peak memory usage is greater than the

amount preallocated with environment variable

MP_BUFFER_MEM, you may wish to increase the

preallocation. If the peak memory usage is

significantly less than the amount preallocated, you

may wish to decrease the preallocation, but set an

upper bound that equals the previous preallocation

value.

tokenStarveds Number of times a message with the length less

than or equal to eager limit were forced to use

rendezvous protocol.

 If there are more than a few times a message was

forced to use rendezvous protocol, you may wish

to increase the upper bound given by the second

argument of environment variable

MP_BUFFER_MEM.

envelope_mem_used Number of bytes the memory buffer used for

storing the envelopes.

The lapi_stats_t structure contains this statistical information:

Tot_retrans_pkt_cnt Retransmit packet count.

Tot_gho_pkt_cnt Ghost packets count.

Tot_pkt_sent_ Total packets sent.

Tot_pkt_recv_cnt Total packets received.

Tot_data_sent Count of total data sent.

Tot_data_recv Count of total data received.

Parameters

fp In C, fp is either STDOUT, STDERR or a FILE pointer returned by the

fopen function.

 In FORTRAN, FILE_DESCRIPTOR is the AIX file descriptor of the file that

this function will write to, having these values:

1 Indicates that the output is to be written to STDOUT.

2 Indicates that the output is to be written to STDERR.

Other Indicates the integer returned by the XL FORTRAN utility getfd, if

the output is to be written to an application-defined file.

 The getfd utility converts a FORTRAN LUNIT number to an AIX

file descriptor. See Examples for more detail.

RC In FORTRAN, RC will contain the integer value returned by this function.

See Return Values for more detail.

MP_STATISTICS_WRITE

Chapter 12. Parallel utility subroutines 115

||
|

|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|

||
|

Return values

-1 Neither MPI nor LAPI statistics are available.

0 Both MPI and LAPI statistics are available.

1 Only MPI statistics are available.

2 Only LAPI statistics are available.

Examples

C Example

#include "pm_util.h"

 MPI_Init(...);

 MPI_Send(...);

 MPI_Recv(...);

 /* Write statistics to standard out */

 mpc_statistics_write(stdout);

 MPI_Finalize();

FORTRAN Example

integer(4) LUNIT, stat_ofile, stat_rc, getfd

 call MPI_INIT (ierror)

c stat_ofile = 1 if output is to go to stdout

c stat_ofile = 2 if output is to go to stderr

c If output is to go a file do the following

 LUNIT = 4

 OPEN (LUNIT, FILE="/tmp/mpi_stat.out")

 CALL FLUSH_(LUNIT)

 stat_ofile = getfd(LUNIT)

 call MP_STATISTICS_WRITE(stat_ofile, stat_rc)

 call MPI_FINALIZE(ierror)

MP_STATISTICS_WRITE

116 IBM PE for AIX 5L V4 R2: MPI Programming Guide

MP_STATISTICS_ZERO, mpc_statistics_zero

Purpose

Resets (zeros) the MPCI_stats_t structure. It has no effect on LAPI.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

mpc_statistics_zero();

FORTRAN synopsis

MP_STATISTICS_ZERO()

Description

If the MP_STATISTICS environment variable is set to yes, MPI will keep a

running total on a set of statistical data, after MPI_INIT is completed. At any time

during execution, the application can call this function to reset the current total to

zero.

Parameters

None.

Return values

None.

MP_STATISTICS_ZERO

Chapter 12. Parallel utility subroutines 117

MP_STDOUT_MODE, mpc_stdout_mode

Purpose

Sets the mode for STDOUT.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_stdout_mode(int mode);

FORTRAN synopsis

MP_STDOUT_MODE(INTEGER MODE)

Description

This parallel utility subroutine requests that STDOUT be set to single, ordered, or

unordered mode. In single mode, only one task output is displayed. In unordered

mode, output is displayed in the order received at the home node. In ordered

mode, each parallel task writes output data to its own buffer. When a flush request

is made all the task buffers are flushed, in order of task ID, to STDOUT home

node.

Parameters

mode

is the mode to which STDOUT is to be set. The valid values are:

taskid Specifies single mode for STDOUT, where taskid is the task identifier of

the new single task. This value must be between 0 and n-1, where n is

the total of tasks in the current partition. The taskid requested does not

have to be the issuing task.

-2 Specifies ordered mode for STDOUT. The macro STDIO_ORDERED is

supplied for use in C programs.

-3 Specifies unordered mode for STDOUT. The macro

STDIO_UNORDERED is supplied for use in C programs.

Notes

v All current STDOUT buffers are flushed before the new STDOUT mode is

established.

v The initial mode for STDOUT is set by using the environment variable

MP_STDOUTMODE, or by using the command-line option -stdoutmode, with

the latter overriding the former. The default STDOUT mode is unordered.

v This subroutine is implemented with a half second sleep interval to ensure that

the mode change request is processed before subsequent writes to STDOUT.

v This subroutine is thread safe.

Return values

In C and C++ calls, the following applies:

0 Indicates successful completion.

MP_STDOUT_MODE

118 IBM PE for AIX 5L V4 R2: MPI Programming Guide

-1 Indicates that an error occurred. A message describing the error will be

issued.

Examples

C Example

The following program uses poe with the -labelio yes option and three tasks:

 #include <pm_util.h>

main()

{

 mpc_stdout_mode(STDIO_ORDERED);

 printf("These lines will appear in task order\n");

 /*

 * Call mpc_flush here to make sure that one task

 * doesn’t change the mode before all tasks have

 * sent the previous printf string to the home node.

 */

 mpc_flush(1);

 mpc_stdout_mode(STDIO_UNORDERED);

 printf("These lines will appear in the order received by the home node\n");

 /*

 * Since synchronization is not used here, one task could actually

 * execute the next statement before one of the other tasks has

 * executed the previous statement, causing one of the unordered

 * lines not to print.

 */

 mpc_stdout_mode(1);

 printf("Only 1 copy of this line will appear from task 1\n");

}

Running the above C program produces the following output (task order of lines

4-6 may differ):

v 0 : These lines will appear in task order.

v 1 : These lines will appear in task order.

v 2 : These lines will appear in task order.

v 1 : These lines will appear in the order received by the home node.

v 2 : These lines will appear in the order received by the home node.

v 0 : These lines will appear in the order received by the home node.

v 1 : Only 1 copy of this line will appear from task 1.

FORTRAN Example

CALL MP_STDOUT_MODE(-2)

WRITE(6, *) ’These lines will appear in task order’

CALL MP_FLUSH(1)

CALL MP_STDOUT_MODE(-3)

WRITE(6, *) ’These lines will appear in the order received by the home node’

CALL MP_STDOUT_MODE(1)

WRITE(6, *) ’Only 1 copy of this line will appear from task 1’

END

Running the above program produces the following output (the task order of lines

4 through 6 may differ):

v 0 : These lines will appear in task order.

v 1 : These lines will appear in task order.

v 2 : These lines will appear in task order.

v 1 : These lines will appear in the order received by the home node.

v 2 : These lines will appear in the order received by the home node.

v 0 : These lines will appear in the order received by the home node.

MP_STDOUT_MODE

Chapter 12. Parallel utility subroutines 119

v 1 : Only 1 copy of this line will appear from task 1.

Related information

Commands:

v mpcc_r

v mpCC_r

v mpxlf_r

Subroutines:

v MP_FLUSH, mpc_flush

v MP_STDOUTMODE_QUERY, mpc_stdoutmode_query

v MP_SYNCH, mpc_synch

MP_STDOUT_MODE

120 IBM PE for AIX 5L V4 R2: MPI Programming Guide

MP_STDOUTMODE_QUERY, mpc_stdoutmode_query

Purpose

Queries the current STDOUT mode setting.

Library

libmpi_r.a

C synopsis

#include <pm_util.h>

int mpc_stdoutmode_query(int *mode);

FORTRAN synopsis

MP_STDOUTMODE_QUERY(INTEGER MODE)

Description

This parallel utility subroutine returns the mode to which STDOUT is currently set.

Parameters

mode

is the address of an integer in which the current STDOUT mode setting will be

returned. Possible return values are:

taskid Indicates that the current STDOUT mode is single, i.e. output for only

task taskid is displayed.

-2 Indicates that the current STDOUT mode is ordered. The macro

STDIO_ORDERED is supplied for use in C programs.

-3 Indicates that the current STDOUT mode is unordered. The macro

STDIO_UNORDERED is supplied for use in C programs.

Notes

v Between the time one task issues a mode query request and receives a response,

it is possible that another task can change the STDOUT mode setting to another

value unless proper synchronization is used.

v This subroutine is thread safe.

Return values

In C and C++ calls, the following applies:

0 Indicates successful completion

-1 Indicates that an error occurred. A message describing the error will be

issued.

Examples

C Example

The following program uses poe with one task:

 #include <pm_util.h>

 main()

MP_STDOUTMODE_QUERY

Chapter 12. Parallel utility subroutines 121

{

 int mode;

 mpc_stdoutmode_query(&mode);

 printf("Initial (default) STDOUT mode is %d\n", mode);

 mpc_stdout_mode(STDIO_ORDERED);

 mpc_stdoutmode_query(&mode);

 printf("New STDOUT mode is %d\n", mode);

 }

Running the above program produces the following output:

v Initial (default) STDOUT mode is -3

v New STDOUT mode is -2

FORTRAN Example

The following program uses poe with one task:

INTEGER MODE

CALL MP_STDOUTMODE_QUERY(mode)

WRITE(6, *) ’Initial (default) STDOUT mode is’, mode

CALL MP_STDOUT_MODE(-2)

CALL MP_STDOUTMODE_QUERY(mode)

WRITE(6, *) ’New STDOUT mode is’, mode

END

Running the above program produces the following output:

v Initial (default) STDOUT mode is -3

v New STDOUT mode is -2

Related information

Commands:

v mpcc_r

v mpCC_r

v mpxlf_r

Subroutines:

v MP_FLUSH, mpc_flush

v MP_STDOUT_MODE, mpc_stdout_mode

v MP_SYNCH, mpc_synch

MP_STDOUTMODE_QUERY

122 IBM PE for AIX 5L V4 R2: MPI Programming Guide

MP_UNSET_CKPT_CALLBACKS, mpc_unset_ckpt_callbacks

Purpose

Unregisters checkpoint, resume, and restart application callbacks.

Library

libmpi_r.a

C synopsis

#include <pm_ckpt.h>

int mpc_unset_ckpt_callbacks(int handle);

FORTRAN synopsis

MP_UNSET_CKPT_CALLBACKS(INTEGER HANDLE, INTEGER RC)

Description

The MP_UNSET_CKPT_CALLBACKS subroutine is called to unregister checkpoint,

resume, and restart application callbacks that were registered with the

MP_SET_CKPT_CALLBACKS subroutine.

Parameters

handle is an integer indicating the set of callback subroutines to be unregistered.

This integer is the value returned by the subroutine used to register the callback

subroutine.

In FORTRAN, RC contains one of the values listed under Return Values.

Notes

If a call to MP_UNSET_CKPT_CALLBACKS is issued while a checkpoint is in

progress, it is possible that the previously-registered callback will still be run

during this checkpoint.

There are certain limitations associated with checkpointing an application. See

“Checkpoint and restart limitations” on page 39 for more information.

For general information on checkpointing and restarting programs, see IBM Parallel

Environment for AIX: Operation and Use, Volume 1.

For more information on the use of LoadLeveler and checkpointing, see IBM

LoadLeveler for AIX 5L: Using and Administering.

Return values

0 Indicates that MP_UNSET_CKPT_CALLBACKS successfully removed the

callback subroutines from the list of registered callback subroutines

-1 Indicates that an error occurred. A message describing the error will be

issued.

Examples

C Example

MP_UNSET_CKPT_CALLBACKS

Chapter 12. Parallel utility subroutines 123

#include <pm_ckpt.h>

int ihndl;

callbacks_t cbs;

void foo(void);

void bar(void);

cbs.checkpoint_callback=foo;

cbs.resume_callback=bar;

cbs.restart_callback=bar;

ihndl = mpc_set_ckpt_callbacks(callbacks_t *cbs); ...
mpc_unset_ckpt_callbacks(ihndl); ...

FORTRAN Example

SUBROUTINE FOO ...
RETURN

END

SUBROUTINE BAR ...
RETURN

END

PROGRAM MAIN

EXTERNAL FOO, BAR

INTEGER HANDLE, RC ...
CALL MP_SET_CKPT_CALLBACKS(FOO,BAR,BAR,HANDLE)

IF (HANDLE .NE. 0) STOP 666 ...
CALL MP_UNSET_CKPT_CALLBACKS(HANDLE,RC) ...
END

Related information

Commands:

v poeckpt

v poerestart

Subroutines:

v MP_INIT_CKPT, mpc_init_ckpt

v MP_SET_CKPT_CALLBACKS, mpc_set_ckpt_callbacks

MP_UNSET_CKPT_CALLBACKS

124 IBM PE for AIX 5L V4 R2: MPI Programming Guide

pe_dbg_breakpoint

Purpose

Provides a communication mechanism between Parallel Operating Environment

(POE) and an attached third party debugger (TPD).

Library

POE API library (libpoeapi.a)

C synopsis

#include <pe_dbg_checkpnt.h>

void pe_dbg_breakpoint(void);

Description

The pe_dbg_breakpoint subroutine is used to exchange information between POE

and an attached TPD for the purposes of starting, checkpointing, or restarting a

parallel application. The call to the subroutine is made by the POE application

within the context of various debug events and related POE global variables,

which may be examined or filled in by POE and the TPD. All task-specific arrays

are allocated by POE and should be indexed by task number (starting with 0) to

retrieve or set information specific to that task.

The TPD should maintain a breakpoint within this function, check the value of

pe_dbg_debugevent when the function is entered, take the appropriate actions for

each event as described below, and allow the POE executable to continue.

PE_DBG_INIT_ENTRY

Used by POE to determine if a TPD is present. The TPD should set the

following:

int pe_dbg_stoptask

Should be set to 1 if a TPD is present. POE will then cause the remote

applications to be stopped using ptrace, allowing the TPD to attach to

and continue the tasks as appropriate.

 In addition, POE will interpret the SIGSOUND and SIGRETRACT

signals as checkpoint requests from the TPD. SIGSOUND should be

sent when the parallel job should continue after a successful

checkpoint, and SIGRETRACT should be sent when the parallel job

should terminate after a successful checkpoint.

Note: Unpredictable results may occur if these signals are sent while a

parallel checkpoint from a PE_DBG_CKPT_REQUEST is still in

progress.

PE_DBG_CREATE_EXIT

Indicates that all remote tasks have been created and are stopped. The TPD

may retrieve the following information about the remote tasks:

int pe_dbg_count

The number of remote tasks that were created. Also the number of

elements in task-specific arrays in the originally started process, which

remains constant across restarts.

 For a restarted POE process, this number may not be the same as the

number of tasks that existed when POE was originally started. To

pe_dbg_breakpoint

Chapter 12. Parallel utility subroutines 125

determine which tasks may have exited prior to the checkpoint from

which the restart is performed, the poe_task_info routine should be

used.

long *pe_dbg_hosts

Address of the array of remote task host IP addresses.

long *pe_dbg_pids

Address of the array of remote task process IDs. Each of these will also

be used as the chk_pid field of the cstate structure for that task’s

checkpoint.

char **pe_dbg_executables

Address of the array of remote task executable names, excluding path.

PE_DBG_CKPT_REQUEST

Indicates that POE has received a user-initiated checkpoint request from one or

all of the remote tasks, has received a request from LoadLeveler to checkpoint

an interactive job, or has detected a pending checkpoint while being run as a

LoadLeveler batch job. The TPD should set the following:

int pe_dbg_do_ckpt

Should be set to 1 if the TPD wishes to proceed with the checkpoint.

PE_DBG_CKPT_START

Used by POE to inform the TPD whether or not to issue a checkpoint of the

POE process. The TPD may retrieve or set the following information for this

event:

int pe_dbg_ckpt_start

Indicates that the checkpoint may proceed if set to 1, and the TPD may

issue a pe_dbg_checkpnt of the POE process and some or all of the

remote tasks.

 The TPD should obtain (or derive) the checkpoint file names,

checkpoint flags, cstate, and checkpoint error file names from the

variables below.

char *pe_dbg_poe_ckptfile

Indicates the full pathname to the POE checkpoint file to be used when

checkpointing the POE process. The name of the checkpoint error file

can be derived from this name by concatenating the .err suffix. The

checkpoint error file name should also be used for

PE_DBG_CKPT_START events to know the file name from which to

read the error data.

char **pe_dbg_task_ckptfiles

Address of the array of full pathnames to be used for each of the task

checkpoints. The name of the checkpoint error file can be derived from

this name by concatenating the .err suffix.

int pe_dbg_poe_ckptflags

Indicates the checkpoint flags to be used when checkpointing the POE

process. Other supported flag values for terminating or stopping the

POE process may be ORed in by the TPD, if the TPD user issued the

checkpoint request.

int pe_dbg_task_ckptflags

Indicates the checkpoint flags to be used when checkpointing the

remote tasks. Other supported flag values for stopping the remote

tasks must be ORed in by the TPD.

pe_dbg_breakpoint

126 IBM PE for AIX 5L V4 R2: MPI Programming Guide

The id argument for calls to the pe_dbg_checkpnt routine may be

derived from the checkpoint flags. If CHKPNT_CRID is set in the

checkpoint flags, the pe_dbg_getcrid routine should be used to

determine the CRID of the checkpoint/restart group. Otherwise, the

PID of the target process should be used. Note that the

CHKPNT_CRID flag will always be set for the remote task

checkpoints, and may or may not be set for POE checkpoints.

int pe_dbg_task_pipecnt

Indicates the number of pipefds that will appear for each task in the

pe_dbg_task_pipefds array. This value must also be used for chk_nfd

in the cstate structure of the remote task checkpoints.

int **pe_dbg_task_pipefds

Pointer to the arrays containing the file descriptor numbers for each of

the remote tasks. These numbers must be used for chk_fdp in the

cstate structure of the remote task checkpoints.

The following variable should be examined by the TPD, but contains no

information directly related to making the pe_dbg_checkpnt calls.

int pe_dbg_ckpt_aware

Indicates whether or not the remote tasks that make up the parallel

application are checkpoint aware.

 The following variables should be filled in by the TPD prior to continuing POE

from this event:

int *pe_dbg_ckpt_pmd

Address of an array used by the TPD to indicate which tasks will have

the checkpoints performed by the TPD (value=0) and which tasks the

Partition Manager Daemon (PMD) should issue checkpoints for

(value=1). POE requires that the TPD must perform all checkpoints for

a particular parallel job on any node where at least one checkpoint will

be performed by the TPD.

int pe_dbg_brkpt_len

Used to inform POE of how much data to allocate for

pe_dbg_brkpt_data for later use by the TPD when saving or restoring

breakpoint data. A value of 0 may be used when there is no breakpoint

data.

PE_DBG_CKPT_START_BATCH

Same as PE_DBG_CKPT_START, but the following variables should be

ignored:

v int pe_dbg_ckpt_start

v int pe_dbg_poe_ckptflags

For this event, the TPD should not issue a checkpoint of the POE process.

PE_DBG_CKPT_VERIFY

Indicates that POE has detected a pending checkpoint. POE must verify that

the checkpoint was issued by the TPD before proceeding. The TPD should set

the following:

int pe_dbg_is_tpd

Should be set to 1 if the TPD issued the checkpoint request.

PE_DBG_CKPT_STATUS

Indicates the status of the remote checkpoints that were performed by the

TPDs. The TPD should set the following:

pe_dbg_breakpoint

Chapter 12. Parallel utility subroutines 127

int *pe_dbg_task_ckpterrnos

Address of the array of errnos from the remote task checkpoints (0 for

successful checkpoint). These values can be obtained from the Py_error

field of the cr_error_t struct, returned from the pe_dbg_read_cr_errfile

calls.

void *pe_dbg_brkpt_data

The breakpoint data to be included as part of POE’s checkpoint file.

The format of the data is defined by the TPD, and may be retrieved

from POE’s address space at restart time.

int *pe_dbg_Sy_errors

The secondary errors obtained from pe_dbg_read_cr_errfile. These

values can be obtained from the Sy_error field of the cr_error_t struct,

returned from the pe_dbg_read_cr_errfile calls.

int *pe_dbg_Xtnd_errors

The extended errors obtained from pe_dbg_read_cr_errfile. These

values can be obtained from the Xtnd_error field of the cr_error_t

struct, returned from the pe_dbg_read_cr_errfile calls.

int *pe_dbg_error_lens

The user error data lengths obtained from pe_dbg_read_cr_errfile.

These values can be obtained from the error_len field of the cr_error_t

struct, returned from the pe_dbg_read_cr_errfile calls.

PE_DBG_CKPT_ERRDATA

Indicates that the TPD has reported one or more task checkpoint failures, and

that POE has allocated space in the following array for the TPD to use to fill in

the error data.

char **pe_dbg_error_data

The user error data obtained from pe_dbg_read_cr_errfile. These

values can be obtained from the error data field of the cr_error_t struct,

returned from the pe_dbg_read_cr_errfile calls.

PE_DBG_CKPT_DETACH

Used by POE to indicate to the TPD that it should detach from the POE

process. After being continued from pe_dbg_breakpoint for this event (just

prior to the TPD actually detaching), POE will wait until its trace bit is no

longer set before instructing the kernel to write its checkpoint file. POE will

indicate to the TPD that it is safe to reattach to the POE process by creating the

file /tmp/.poe.PID.reattach, where PID is the process ID of the POE process.

PE_DBG_CKPT_RESULTS

Indicates the checkpoint results to either POE or the TPD, depending on who

issued the checkpoint of POE.

int pe_dbg_ckpt_rc

If the TPD issued the checkpoint, this variable should be filled in by

the TPD and should contain the return code from the call to

pe_dbg_checkpnt. Otherwise, POE will fill in this value to indicate to

the TPD whether the checkpoint succeeded (value=1) or failed

(value=0). For failed checkpoints, the TPD may obtain the error

information from the POE checkpoint error file.

int pe_dbg_ckpt_errno

If the TPD issued the checkpoint and the checkpoint failed, this

variable should be filled in by the TPD and should contain the errno

set by AIX upon return from pe_dbg_checkpnt.

pe_dbg_breakpoint

128 IBM PE for AIX 5L V4 R2: MPI Programming Guide

PE_DBG_CKPT_RESUME

When this event occurs, the TPD may continue or terminate the remote tasks

(or keep them stopped) after a successful checkpoint. The TPD must not

perform the post-checkpoint actions until this event is received, to ensure that

POE and LoadLeveler have performed their post-checkpoint synchronization. If

the TPD did not issue the checkpoint, the following variable should be

examined:

int pe_dbg_ckpt_action

POE will fill in this value to indicate to the TPD if the remote tasks

should be continued (value=0) or terminated (value=1) after a

successful checkpoint.

PE_DBG_CKPT_CANCEL

Indicates that POE has received a request to cancel an in-progress checkpoint.

The TPD should cause a SIGINT to be sent to the thread that issued the

pe_dbg_checkpnt calls in the remote tasks. If the TPD is non-threaded and

performs non-blocking checkpoints, the task checkpoints cannot be cancelled.

Note: If the TPD user issues a request to cancel a checkpoint being performed

by the TPD, the TPD should send a SIGGRANT to the POE process so

that the remote checkpoints being performed by the PMDs can be

interrupted. Otherwise, the checkpoint call in the TPD can return while

some remote checkpoints are still in progress.

PE_DBG_RESTART_READY

Indicates that processes for the remote task restarts have been created and that

pe_dbg_restart calls for the remote tasks may be issued by the TPD. The TPD

must perform the restarts of all remote tasks.

 The TPD should first retrieve the remote task information specified in the

variables described above under PE_DBG_CREATE_EXIT. The TPD should

then obtain (or derive) the restart file names, the restart flags, rstate, and

restart error file names from the variables below. The id argument for the

pe_dbg_restart call must be derived from the remote task PID using

pe_dbg_getcrid routine.

char **pe_dbg_task_rstfiles

Address of the array of full pathnames to be used for each of the task

restarts. The name of the restart error file can be derived from this

name by concatenating the .err suffix.

int pe_dbg_task_rstflags

Indicates the restart flags to be used when restarting the remote tasks.

Other supported flag values for stopping the remote tasks may be

ORed in by the TPD.

char **pe_dbg_task_rstate

Address of the array of strings containing the restart data required for

each of the remote tasks. This value may be used as is for the

rst_buffer member of the rstate structure used in the remote task

restarts, or additional data may be appended by the TPD, as described

below:

DEBUGGER_STOP=yes

If this string appears in the task restart data, followed by a newline

(\n) character and a \0, the remote task will send a SIGSTOP signal to

itself once all restart actions have been completed in the restart

handler. This will likely be used by the TPD when tasks are

pe_dbg_breakpoint

Chapter 12. Parallel utility subroutines 129

checkpoint-aware, and the TPD wants immediate control of the task

after it completes restart initialization.

 The rst_len member of the rstate structures should include a \0,

whether the TPD appends to the rst_buffer or not.

 The following variables should be re-examined by the TPD during this event:

int pe_dbg_ckpt_aware

Indicates whether or not the remote tasks that make up the parallel

application are checkpoint aware.

void *pe_dbg_brkpt_data

The breakpoint data that was included as part of POE’s checkpoint file.

The format of the data is defined by the TPD.

 The following variables should be filled in by the TPD prior to continuing POE

from this event. This also implies that all remote restarts must have been

performed before continuing POE:

int *pe_dbg_task_rsterrnos

Address of the array of errnos from the remote task restarts (0 for

successful restart). These values can be obtained from the Py_error

field of the cr_error_t struct, returned from the pe_dbg_read_cr_errfile

calls.

int *pe_dbg_Sy_errors

The secondary errors obtained from pe_dbg_read_cr_errfile. These

values can be obtained from the Sy_error field of the cr_error_t struct,

returned from the pe_dbg_read_cr_errfile calls.

int *pe_dbg_Xtnd_errors

The extended errors obtained from pe_dbg_read_cr_errfile. These

values can be obtained from the Xtnd_error field of the cr_error_t

struct, returned from the pe_dbg_read_cr_errfile calls.

int *pe_dbg_error_lens

The user error data lengths obtained from pe_dbg_read_cr_errfile.

These values can be obtained from the error_len field of the cr_error_t

struct, returned from the pe_dbg_read_cr_errfile calls.

PE_DBG_RESTART_ERRDATA

Indicates that the TPD has reported one or more task restart failures, and that

POE has allocated space in the following array for the TPD to use to fill in the

error data.

char **pe_dbg_error_data

The user error data obtained from pe_dbg_read_cr_errfile. These

values can be obtained from the error data field of the cr_error_t struct,

returned from the pe_dbg_read_cr_errfile calls.

Notes

Use -I/usr/lpp/ppe.poe/include to pick up the header file. This flag is an uppercase

letter i.

Any references to process ID or PID above represent the real process ID, and not

the virtual process ID associated with checkpointed/restarted processes.

pe_dbg_breakpoint

130 IBM PE for AIX 5L V4 R2: MPI Programming Guide

pe_dbg_checkpnt

Purpose

Checkpoints a process that h is under debugger control, or a group of processes.

Library

POE API library (libpoeapi.a)

C synopsis

#include <pe_dbg_checkpnt.h>

int pe_dbg_checkpnt(path, id, flags, cstate, epath)

char *path;

id_t id;

unsigned int flags;

chk_state_t *cstate;

char *epath;

Description

The pe_dbg_checkpnt subroutine allows a process to checkpoint a process that is

under debugger control, or a set of processes that have the same

checkpoint/restart group ID (CRID). The state information of the checkpointed

processes is saved in a single file. All information required to restart the processes

(other than the executable files, any shared libraries, any explicitly loaded modules

and data, if any, passed through the restart system calls) is contained in the

checkpoint file.

Processes to be checkpointed will be stopped before the process information is

written to the checkpoint file to maintain data integrity. If a process has not

registered a checkpoint handler, it will be stopped when a checkpoint request is

issued. However, if a process has registered a checkpoint handler, the debugger

must allow the checkpoint handler to reach its call to checkpnt_commit for the

process to be put into the stopped state.

After all processes have been stopped, the checkpoint file is written with process

information one process at a time. After the write has completed successfully, the

pe_dbg_checkpnt subroutine will do one of the following depending on the value

of the flags passed:

v Continue the processes.

v Terminate all the checkpointed processes.

v Leave the processes in the stopped state.

If any one of the processes to be checkpointed is a setuid or setgid program, the

pe_dbg_checkpnt subroutine will fail, unless the caller has superuser privilege. If

shared memory is being used within the set of processes being checkpointed, all

processes that use the shared memory must belong to the checkpoint/restart group

being checkpointed, or the pe_dbg_checkpnt subroutine will fail, unless the

CHKPNT_IGNORE_SHMEM flag is set.

The pe_dbg_checkpnt subroutine may be interrupted, in which case, all processes

being checkpointed will continue to run and neither a checkpoint file nor an error

file will be created.

pe_dbg_checkpnt

Chapter 12. Parallel utility subroutines 131

Parameters

path

The path of the checkpoint file to be created. This file will be created read-only

with the ownership set to the user ID of the process invoking the

pe_dbg_checkpnt call.

id Indicates the process ID of the process to be checkpointed or the

checkpoint/restart group ID or CRID of the set of processes to be checkpointed

as specified by a value of the flags parameter.

flags

Determines the behavior of the pe_dbg_checkpnt subroutine and defines the

interpretation of the id parameter. The flags parameter is constructed by

logically ORing the following values, which are defined in the sys/checkpnt.h

file:

CHKPNT_AND_STOP

Setting this bit causes the checkpointed processes to be put in a

stopped state after a successful checkpoint operation. The processes

can be continued by sending them SIGCONT. The default is to

checkpoint and continue running the processes.

CHKPNT_AND_STOPTRC

Setting this bit causes any process that is traced to be put in a stopped

state after a successful checkpoint operation. The processes can be

continued by sending them SIGCONT. The default is to checkpoint and

continue running the processes.

CHKPNT_AND_TERMINATE

Setting this bit causes the checkpointed processes to be terminated on a

successful checkpoint operation. The default is to checkpoint and

continue running the processes.

CHKPNT_CRID

Specifies that the id parameter is the checkpoint/restart group ID or

CRID of the set of processes to be checkpointed.

CHKPNT_IGNORE_SHMEM

Specifies that shared memory should not be checkpointed.

CHKPNT_NODELAY

Specifies that pe_dbg_checkpnt will not wait for the completion of the

checkpoint call. As soon as all the processes to be checkpointed have

been identified, and the checkpoint operation started for each of them,

the call will return. The kernel will not provide any status on whether

the call was successful. The application must examine the checkpoint

file to determine if the checkpoint operation succeeded or not. By

default, the pe_dbg_checkpnt subroutine will wait for all the

checkpoint data to be completely written to the checkpoint file before

returning.

The CHKPNT_AND_TERMINATE and CHKPNT_AND_STOP flags are

mutually exclusive. Do not specify them at the same time.

cstate

Pointer to a structure of type chk_state_t. This parameter is ignored unless the

process is the primary checkpoint process for the pending checkpoint

operation. The list of file descriptors that need to be inherited at restart time

should be specified in the structure.

pe_dbg_checkpnt

132 IBM PE for AIX 5L V4 R2: MPI Programming Guide

epath

An error file name to log error and debugging data if the checkpoint fails. This

field is mandatory and must be provided.

Notes

Use -I/usr/lpp/ppe.poe/include to pick up the header file. This flag is an uppercase

letter i.

Any references to process ID or PID above represent the real process ID, and not

the virtual process ID associated with checkpointed or restarted processes.

Return values

Upon successful completion, a value of CHECKPOINT_OK is returned.

If the invoking process is included in the set of processes being checkpointed, and

the CHKPNT_AND_TERMINATE flag is set, this call will not return if the

checkpoint is successful because the process will be terminated.

If the pe_dbg_checkpnt call is unsuccessful, CHECKPOINT_FAILED is returned

and the errno global variable is set to indicate the error.

If a process that successfully checkpointed itself is restarted, it will return from the

pe_dbg_checkpnt call with a value of RESTART_OK.

Errors

The pe_dbg_checkpnt subroutine is unsuccessful when the global variable errno

contains one of the following values:

EACCES

One of the following is true:

v The file exists, but could not be opened successfully in exclusive mode,

or write permission is denied on the file, or the file is not a regular file.

v Search permission is denied on a component of the path prefix specified

by the path parameter. Access could be denied due to a secure mount.

v The file does not exist, and write permission is denied for the parent

directory of the file to be created.

EAGAIN

Either the calling process or one or more of the processes to be

checkpointed is already involved in another checkpoint or restart

operation.

EINTR

Indicates that the checkpoint operation was terminated due to receipt of a

signal. No checkpoint file will be created. A call to the

pe_dbg_checkpnt_wait subroutine should be made when this occurs, to

ensure that the processes reach a state where subsequent checkpoint

operations will not fail unpredictably.

EINVAL

Indicates that a NULL path or epath parameter was passed in, or an

invalid set of flags was set, or an invalid id parameter was passed.

ENOMEM

Insufficient memory exists to initialize the checkpoint structures.

pe_dbg_checkpnt

Chapter 12. Parallel utility subroutines 133

ENOSYS

One of the following is true:

v The caller of the function is not a debugger.

v The process could not be checkpointed because it violated a restriction.

ENOTSUP

One of the processes to be checkpointed is a kernel process or has a

kernel-only thread.

EPERM

Indicates that the process does not have appropriate privileges to

checkpoint one or more of the processes.

ESRCH

One of the following is true:

v The process whose process ID was passed, or the checkpoint/restart

group whose CRID was passed, does not exist.

v The process whose process ID was passed, or the checkpoint/restart

group whose CRID was passed, is not checkpointable because there in

no process that had the environment variable CHECKPOINT set to yes

at execution time.

v The indicated checkpoint/restart group does not have a primary

checkpoint process.

pe_dbg_checkpnt

134 IBM PE for AIX 5L V4 R2: MPI Programming Guide

pe_dbg_checkpnt_wait

Purpose

Waits for a checkpoint, or pending checkpoint file I/O, to complete.

Library

POE API library (libpoeapi.a)

C synopsis

#include <pe_dbg_checkpnt.h>

int pe_dbg_checkpnt_wait(id, flags, options)

id_t id;

unsigned int flags;

int *options;

Description

The pe_dbg_checkpnt_wait subroutine can be used to:

v Wait for a pending checkpoint issued by the calling thread’s process to complete.

v Determine whether a pending checkpoint issued by the calling thread’s process

has completed, when the CHKPNT_NODELAY flag is specified.

v Wait for any checkpoint file I/O that may be in progress during an interrupted

checkpoint to complete.

The pe_dbg_checkpnt_wait subroutine will return to the caller once any

checkpoint file I/O that may be in progress during an interrupted checkpoint has

completed. The pe_dbg_checkpnt routine does not wait for this file I/O to

complete when the checkpoint operation is interrupted. Failure to perform this call

after an interrupted checkpoint can cause a process or set of processes to be in a

state where subsequent checkpoint operations could fail unpredictably.

Parameters

id Indicates the process ID or the checkpoint/restart group ID (CRID) of the

processes for which a checkpoint operation was initiated or interrupted, as

specified by a value of the flag parameter.

flags

Defines the interpretation of the id parameter. The flags parameter may

contain the following value, which is defined in the sys/checkpnt.h file:

CHKPNT_CRID

Specifies that the id parameter is the checkpoint/restart group ID or

CRID of the set of processes for which a checkpoint operation was

initiated or interrupted.

CHKPNT_NODELAY

Specifies that pe_dbg_checkpnt_wait will not wait for the completion

of the checkpoint call. This flag should not be used when waiting for

pending checkpoint file I/O to complete.

options

This field is reserved for future use and should be set to NULL.

 Future implementations of this function may return the checkpoint error code

in this field. Until then, the size of the checkpoint error file can be used in

most cases to determine whether the checkpoint succeeded or failed. If the size

pe_dbg_checkpnt_wait

Chapter 12. Parallel utility subroutines 135

of the file is 0, the checkpoint succeeded, otherwise the checkpoint failed and

checkpoint error file will contain the error codes. If the file does not exist, the

checkpoint most likely failed due to an EPERM or ENOENT on the checkpoint

error file pathname.

Notes

Use -I/usr/lpp/ppe.poe/include to pick up the header file. This flag is an uppercase

letter i.

Any references to process ID or PID above represent the real process ID, and not

the virtual process ID associated with checkpointed/restarted processes.

Return values

Upon successful completion, a value of 0 is returned, indicating that one of the

following is true:

v The pending checkpoint completed.

v There was no pending checkpoint.

v The pending file I/O completed.

v There was no pending file I/O.

If the pe_dbg_checkpnt_wait call is unsuccessful, -1 is returned and the errno

global variable is set to indicate the error.

Errors

The pe_dbg_checkpnt_wait subroutine is unsuccessful when the global variable

errno contains one of the following values:

EINPROGRESS

Indicates that the pending checkpoint operation has not completed when

the CHKPNT_NODELAY flag is specified.

EINTR

Indicates that the operation was terminated due to receipt of a signal.

EINVAL

Indicates that an invalid flag was set.

ENOSYS

The caller of the function is not a debugger.

ESRCH

The process whose process ID was passed or the checkpoint/restart group

whose CRID was passed does not exist.

pe_dbg_checkpnt_wait

136 IBM PE for AIX 5L V4 R2: MPI Programming Guide

pe_dbg_getcrid

Purpose

Returns the checkpoint/restart ID.

Library

POE API library (libpoeapi.a)

C synopsis

crid_t pe_dbg_getcrid(pid)

pid_t pid;

Description

The pe_dbg_getcrid subroutine returns the checkpoint/restart group ID (CRID) of

the process whose process ID was specified in the pid parameter, or the CRID of

the calling process if a value of -1 was passed.

Parameters

pid Either the process ID of a process to obtain its CRID, or -1 to request the

CRID of the calling process.

Notes

Any references to process ID or PID above represent the real process ID, and not

the virtual process ID associated with checkpointed/restarted processes.

Return values

If the process belongs to a checkpoint/restart group, a valid CRID is returned. If

the process does not belong to any checkpoint/restart group, a value of zero is

returned. For any error, a value of -1 is returned and the errno global variable is

set to indicate the error.

Errors

The pe_dbg_getcrid subroutine is unsuccessful when the global variable errno

contains one of the following values:

ENOSYS The caller of the function is not a debugger.

ESRCH There is no process with a process id equal to pid.

pe_dbg_getcrid

Chapter 12. Parallel utility subroutines 137

pe_dbg_getrtid

Purpose

Returns real thread ID of a thread in a specified process given its virtual thread ID.

Library

POE API library (libpoeapi.a)

C synopsis

#include <pe_dbg_checkpnt.h>

tid_t pe_dbg_getrtid(pid, vtid)

pid_t pid;

tid_t vtid;

Description

The pe_dbg_getrtid subroutine returns the real thread ID of the specified virtual

thread in the specified process.

Parameters

pid The real process ID of the process containing the thread for which the real

thread ID is needed

vtid The virtual thread ID of the thread for which the real thread ID is needed.

Return values

If the calling process is not a debugger, a value of -1 is returned. Otherwise, the

pe_dbg_getrtid call is always successful. If the process does not exist or has exited

or is not a restarted process, or if the provided virtual thread ID does not exist in

the specified process, the value passed in the vtid parameter is returned.

Otherwise, the real thread ID of the thread whose virtual thread ID matches the

value passed in the vtid parameter is returned

Errors

The pe_dbg_getrtid subroutine is unsuccessful if the following is true:

ENOSYS The caller of the function is not a debugger.

pe_dbg_getrtid

138 IBM PE for AIX 5L V4 R2: MPI Programming Guide

pe_dbg_getvtid

Purpose

Returns virtual thread ID of a thread in a specified process given its real thread ID.

Library

POE API library (libpoeapi.a)

C synopsis

#include <pe_dbg_checkpnt.h>

tid_t pe_dbg_getvtid(pid, rtid)

pid_t pid;

tid_t rtid

Description

The pe_dbg_getvtid subroutine returns the virtual thread ID of the specified real

thread in the specified process.

Parameters

pid The real process ID of the process containing the thread for which the real

thread ID is needed

rtid The real thread ID of the thread for which the virtual thread ID is needed.

Return values

If the calling process is not a debugger, a value of -1 is returned.

Otherwise, the pe_dbg_getvtid call is always successful.

If the process does not exist, the process has exited, the process is not a restarted

process, or the provided real thread ID does not exist in the specified process, the

value passed in the rtid parameter is returned.

Otherwise, the virtual thread ID of the thread whose real thread ID matches the

value passed in the rtid parameter is returned.

Errors

The pe_dbg_getvtid subroutine is unsuccessful if the following is true:

ENOSYS The caller of the function is not a debugger.

pe_dbg_getvtid

Chapter 12. Parallel utility subroutines 139

pe_dbg_read_cr_errfile

Purpose

Opens and reads information from a checkpoint or restart error file.

Library

POE API library (libpoeapi.a)

C synopsis

#include <pe_dbg_checkpnt.h>

void pe_dbg_read_cr_errfile(char *path, cr_error_t *err_data, int cr_errno)

Description

The pe_dbg_read_cr_errfile subroutine is used to obtain the error information

from a failed checkpoint or restart. The information is returned in the cr_error_t

structure, as defined in /usr/include/sys/checkpnt.h.

Parameters

path

The full pathname to the error file to be read.

err_data

Pointer to a cr_error_t structure in which the error information will be

returned.

cr_errno

The errno from the pe_dbg_checkpnt or pe_dbg_restart call that failed. This

value is used for the Py_error field of the returned structure if the file specified

by the path parameter does not exist, has a size of 0, or cannot be opened.

Notes

Use -I/usr/lpp/ppe.poe/include to pick up the header file. This flag is an uppercase

letter i.

pe_dbg_read_cr_errfile

140 IBM PE for AIX 5L V4 R2: MPI Programming Guide

pe_dbg_restart

Purpose

Restarts processes from a checkpoint file.

Library

POE API library (libpoeapi.a)

C synopsis

#include <pe_dbg_checkpnt.h>

int pe_dbg_restart(path, id, flags, rstate, epath)

char *path;

id_t id;

unsigned int flags;

rst_state_t *rstate;

char *epath;

Description

The pe_dbg_restart subroutine allows a process to restart all the processes whose

state information has been saved in the checkpoint file.

All information required to restart these processes (other than the executable files,

any shared libraries and explicitly loaded modules) is recreated from the

information from the checkpoint file. Then, a new process is created for each

process whose state was saved in the checkpoint file. The only exception is the

primary checkpoint process, which overlays an existing process specified by the id

parameter.

When restarting a single process that was checkpointed, the id parameter specifies

the process ID of the process to be overlaid. When restarting a set of processes, the

id parameter specifies the checkpoint/restart group ID of the process to be

overlaid, and the flags parameter must set RESTART_OVER_CRID. This process

must also be the primary checkpoint process of the checkpoint/restart group. The

user ID and group IDs of the primary checkpoint process saved in the checkpoint

file should match the user ID and group IDs of the process it will overlay.

After all processes have been re-created successfully, the pe_dbg_restart subroutine

will do one of the following, depending on the value of the flags passed:

v Continue the processes from the point where each thread was checkpointed.

v Leave the processes in the stopped state.

A primary checkpoint process inherits attributes from the attributes saved in the

file, and also from the process it overlays. Other processes in the checkpoint file

obtain their attributes only from the checkpoint file, unless they share some

attributes with the primary checkpoint process. In this case, the shared attributes

are inherited. Although the resource usage of each checkpointed process is saved

in the checkpoint file, the resource usage attributes will be zeroed out when it is

restarted and the getrusage subroutine will return only resource usage after the

last restart operation.

Some new state data can be provided to processes, primary or non-primary, at

restart time if they have a checkpoint handler. The handler should have passed in

a valid rst parameter when it called checkpnt_commit at checkpoint time. At

restart time, a pointer to an interface buffer can be passed through the rstate

pe_dbg_restart

Chapter 12. Parallel utility subroutines 141

parameter in the pe_dbg_restart subroutine. The data in the buffer will be copied

to the address previously specified in the rst parameter by the checkpoint handler

before the process is restarted. The format of the interface buffer is entirely

application dependent.

If any one of the processes to be restarted is a setuid or a setgid program, the

pe_dbg_restart subroutine will fail, unless the caller has root privilege.

Parameters

path

The path of the checkpoint file to use for the restart. Must be a valid

checkpoint file created by a pe_dbg_checkpnt call.

id Indicates the process ID or the checkpoint/restart group ID or CRID of the

process that is to be overlaid by the primary checkpoint process as identified

by the flags parameter.

flags

Determines the behavior of the pe_dbg_restart subroutine and defines the

interpretation of the id parameter. The flags parameter is constructed by

logically ORing one or more of the following values, which are defined in the

sys/checkpnt.h file:

RESTART_AND_STOP

Setting this bit will cause the restarted processes to be put in a stopped

state after a successful restart operation. They can be continued by

sending them SIGCONT. The default is to restart and resume running

the processes at the point where each thread in the process was

checkpointed.

RESTART_AND_STOPTRC

Setting this bit will cause any process that was traced at checkpoint

time to be put in a stopped state after a successful restart operation.

The processes can be continued by sending them SIGCONT. The

default is to restart and resume execution of the processes at the point

where each thread in the process was checkpointed.

RESTART_IGNORE_BADSC

Causes the restart operation not to fail if a kernel extension that was

present at checkpoint time is not present at restart time. However, if

the restarted program uses any system calls in the missing kernel

extension, the program will fail when those calls are used.

RESTART_OVER_CRID

Specifies that the id parameter is the checkpoint/restart group ID or

CRID of the process over which the primary checkpoint process will be

restarted. There are multiple processes to be restarted.

RESTART_PAG_ALL

Same as RESTART_WAITER_PAG.

RESTART_WAITER_PAG

Ensures that DCE credentials are restored in the restarted process.

rstate

Pointer to a structure of type rst_state_t.

epath

Path to error file to log error and debugging data, if restart fails.

pe_dbg_restart

142 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Notes

Use -I/usr/lpp/ppe.poe/include to pick up the header file. This flag is an uppercase

letter i.

Any references to process ID or PID above represent the real process ID, and not

the virtual process ID associated with checkpointed/restarted processes.

Return values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is

returned and the errno global variable is set to indicate the error.

Errors

The pe_dbg_restart subroutine is unsuccessful when the global variable errno

contains one of the following values:

EACCES

One of the following is true:

v The file exists, but could not be opened successfully in exclusive mode,

or write permission is denied on the file, or the file is not a regular file.

v Search permission is denied on a component of the path prefix specified

by the path parameter. Access could be denied due to a secure mount.

v The file does not exist, and write permission is denied for the parent

directory of the file to be created.

EAGAIN

One of the following is true:

v The user ID has reached the maximum limit of processes that it can have

simultaneously, and the invoking process is not privileged.

v Either the calling process or the target process is involved in another

checkpoint or restart operation.

EFAULT

Copying from the interface buffer failed. The rstate parameter points to a

location that is outside the address space of the process.

EINVAL

One of the following is true:

v A NULL path was passed in.

v The checkpoint file contains invalid or inconsistent data.

v The target process is a kernel process.

v The restart data length in the rstate structure is greater than

MAX_RESTART_DATA.

ENOMEM

One of the following is true:

v There is insufficient memory to create all the processes in the checkpoint

file.

v There is insufficient memory to allocate the restart structures inside the

kernel.

ENOSYS

One of the following is true:

v The caller of the function is not a debugger.

pe_dbg_restart

Chapter 12. Parallel utility subroutines 143

v One or more processes could not be restarted because a restriction was

violated.

v File descriptors or user ID or group IDs are mismatched between the

primary checkpoint process and overlaid process.

v The calling process is also the target of the pe_dbg_restart subroutine.

EPERM

One of the following is true:

v The calling process does not have appropriate privileges to target for

overlay by a restarted process, one or more of the processes identified by

the id parameter.

v The calling process does not have appropriate privileges to restart one or

more of the processes in the checkpoint file.

ESRCH

Indicates that there is no process with the process ID specified by the id

parameter, or there is no checkpoint restart group with the specified CRID.

pe_dbg_restart

144 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Chapter 13. Parallel task identification API subroutines

PE includes an API that allows an application to retrieve the process IDs of all

POE master processes, or home node processes that are running on the same node. The

information that is retrieved can be used for accounting, or to get more detailed

information about the tasks that are spawned by these POE processes.

This chapter includes descriptions of the parallel task identification API

subroutines that are available for parallel programming:

v “poe_master_tasks” on page 146.

v “poe_task_info” on page 147.

© Copyright IBM Corp. 1993, 2005 145

poe_master_tasks

Purpose

Retrieves the list of process IDs of POE master processes currently running on this

system.

C synopsis

#include "poeapi.h"

int poe_master_tasks(pid_t **poe_master_pids);

Description

An application invoking this subroutine while running on a given node can

retrieve the list of process IDs of all POE master processes that are currently

running on the same node. This information can be used for accounting purposes

or can be passed to the poe_task_info subroutine to obtain more detailed

information about tasks spawned by these POE master processes.

Parameters

On return, (*poe_master_pids) points to the first element of an array of pid_t

elements that contains the process IDs of POE master processes. It is the

responsibility of the calling program to free this array. This pointer is NULL if no

POE master process is running on this system or if there is an error condition.

Notes

Use -I/usr/lpp/ppe.poe/include to pick up the header file.

If you are using the -bI:libpoeapi.exp binder option, -L/usr/lpp/ppe.poe/lib is

required; otherwise, you will need to use: -llibpoeapi.

Return values

greater than 0

Indicates the size of the array that (*poe_master_pids) points to

0 Indicates that no POE master process is running.

-1 Indicates that a system error has occurred.

-2 Indicates that POE is unable to allocate memory.

-3 Indicates a non-valid poe_master_pids argument.

Related information

v poe_task_info

poe_master_tasks

146 IBM PE for AIX 5L V4 R2: MPI Programming Guide

poe_task_info

Purpose

Returns a NULL-terminated array of pointers to structures of type

POE_TASKINFO.

C synopsis

#include "poeapi.h"

int poe_task_info(pid_t poe_master_pid, POE_TASKINFO ***poe_taskinfo);

Description

Given the process ID of a POE master process, this subroutine returns to the

calling program through the poe_taskinfo argument a NULL-terminated array of

pointers to structures of type POE_TASKINFO. There is one POE_TASKINFO

structure for each POE task spawned by this POE master process on a local or

remote node.

Each POE_TASKINFO structure contains:

v node name

v IP address

v task ID

v AIX session ID

v child process name

v child process ID

Parameters

poe_master_pid

Specifies the process ID of a POE master process.

poe_taskinfo

On return, points to the first element of a NULL-terminated array of pointers

to structures of type POE_TASKINFO.

 This pointer is NULL if there is an error condition. It is the responsibility of

the calling program to free the array of pointers to POE_TASKINFO structures,

as well as the relevant POE_TASKINFO structures and the subcomponents

h_name, h_addr, and p_name.

The structure POE_TASKINFO is defined in poeapi.h:

typedef struct POE_TASKINFO {

 char *h_name; /* host name */

 char *ip_addr; /* IP address */

 int task_id; /* task ID */

 int session_id; /* AIX session ID */

 pid_t pid; /* child process ID */

 char *p_name; /* child process name */

} POE_TASKINFO:

Notes

Use -I/usr/lpp/ppe.poe/include to pick up the header file.

If you are using the -bI:libpoeapi.exp binder option, -L/usr/lpp/ppe.poe/lib is

required; otherwise, you will need to use: -llibpoeapi.

poe_task_info

Chapter 13. Parallel task identification API subroutines 147

Return values

greater than 0

Indicates the size of the array that (*poe_taskinfo) points to

0 Indicates that no POE master process is running or that task information is

not available yet

-1 Indicates that a system error has occurred.

-2 Indicates that POE is unable to allocate memory.

-3 Indicates a non-valid poe_master_pids argument.

Related information

v poe_master_tasks

poe_task_info

148 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Appendix A. MPE subroutine summary

Table 23 lists the non-blocking collective communication subroutines that are

available for parallel programming. These subroutines, which have a prefix of

MPE_I, are extensions of the MPI standard. They are part of IBM’s implementation

of the MPI standard for PE. For descriptions of these subroutines, see IBM Parallel

Environment for AIX: MPI Subroutine Reference.

With PE Version 4, these nonstandard extensions remain available, but their use is

deprecated. The implementation of these routines depends on hidden message

passing threads. These routines may not be used with environment variable

MP_SINGLE_THREAD set to yes.

Earlier versions of PE/MPI allowed matching of blocking (MPI) with non-blocking

(MPE_I) collectives. With PE Version 4, it is advised that you do not match

blocking and non-blocking collectives in the same collective operation. If you do, a

hang situation can occur. It is possible that some existing applications may hang,

when run using PE Version 4. In the case of an unexpected hang, turn on

DEVELOP mode by setting the environment variable MP_EUIDEVELOP to yes,

and rerun your application. DEVELOP mode will detect and report any mismatch.

If DEVELOP mode identifies a mismatch, you may continue to use the application

as is, by setting MP_SHARED_MEMORY to no. If possible, alter the application to

remove the matching of non-blocking with blocking collectives.

 Table 23. MPE Subroutines

Subroutine:

C Name

FORTRAN Name

Description

MPE_Iallgather

MPE_IALLGATHER

non-blocking allgather operation.

MPE_Iallgatherv

MPE_IALLGATHERV

non-blocking allgatherv operation.

MPE_Iallreduce

MPE_IALLREDUCE

non-blocking allreduce operation.

MPE_Ialltoall

MPE_IALLTOALL

non-blocking alltoall operation.

MPE_Ialltoallv

MPE_IALLTOALLV

non-blocking alltoallv operation.

MPE_Ibarrier

MPE_IBARRIER

non-blocking barrier operation.

MPE_Ibcast

MPE_IBCAST

non-blocking broadcast operation.

MPE_Igather

MPE_IGATHER

non-blocking gather operation.

MPE_Igatherv

MPE_IGATHERV

non-blocking gatherv operation.

MPE_Ireduce

MPE_IREDUCE

non-blocking reduce operation.

MPE_Ireduce_scatter

MPE_IREDUCE_SCATTER

non-blocking reduce_scatter operation.

© Copyright IBM Corp. 1993, 2005 149

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Table 23. MPE Subroutines (continued)

Subroutine:

C Name

FORTRAN Name

Description

MPE_Iscan

MPE_ISCAN

non-blocking scan operation.

MPE_Iscatter

MPE_ISCATTER

non-blocking scatter operation.

MPE_Iscatterv

MPE_ISCATTERV

non-blocking scatterv operation.

150 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Appendix B. MPE subroutine bindings

Table 24 summarizes the binding information for all of the MPE subroutines listed

in IBM Parallel Environment for AIX: MPI Subroutine Reference. With PE Version 4,

these nonstandard extensions remain available, but their use is deprecated. The

implementation of these routines depends on hidden message passing threads.

These routines may not be used with environment variable

MP_SINGLE_THREAD set to yes.

Earlier versions of PE/MPI allowed matching of blocking (MPI) with non-blocking

(MPE_I) collectives. With PE Version 4, it is advised that you do not match

blocking and non-blocking collectives in the same collective operation. If you do, a

hang situation can occur. It is possible that some existing applications may hang,

when run using PE Version 4. In the case of an unexpected hang, turn on

DEVELOP mode by setting the environment variable MP_EUIDEVELOP to yes,

and rerun your application. DEVELOP mode will detect and report any mismatch.

If DEVELOP mode identifies a mismatch, you may continue to use the application

as is, by setting MP_SHARED_MEMORY to no. If possible, alter the application to

remove the matching of non-blocking with blocking collectives.

Note: FORTRAN refers to FORTRAN 77 bindings that are officially supported for

MPI. However, FORTRAN 77 bindings can be used by FORTRAN 90.

FORTRAN 90 and High Performance FORTRAN (HPF) offer array section

and assumed shape arrays as parameters on calls. These are not safe with

MPI.

Bindings for non-blocking collective communication

Table 24 lists the C and FORTRAN bindings for non-blocking collective

communication subroutines. These subroutines, which have a prefix of MPE_I, are

extensions of the MPI standard. They are part of IBM’s implementation of the MPI

standard for PE.

 Table 24. Bindings for non-blocking collective communication

C and FORTRAN subroutine C and FORTRAN binding

MPE_Iallgather int MPE_Iallgather(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*

recvbuf,int recvcount,MPI_Datatype recvtype, MPI_Comm comm,MPI_Request

*request);

MPE_IALLGATHER MPE_IALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER

SENDTYPE, CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER

RECVTYPE,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Iallgatherv int MPE_Iallgatherv(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*

recvbuf,int *recvcounts,int *displs,MPI_Datatype recvtype,MPI_Comm

comm,MPI_Request *request);

MPE_IALLGATHERV MPE_IALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER

SENDTYPE, CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER

DISPLS(*),INTEGER RECVTYPE,INTEGER COMM,INTEGER

REQUEST,INTEGER IERROR)

MPE_Iallreduce int MPE_Iallreduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype

datatype,MPI_Op op,MPI_Comm comm,MPI_Request *request);

© Copyright IBM Corp. 1993, 2005 151

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Table 24. Bindings for non-blocking collective communication (continued)

C and FORTRAN subroutine C and FORTRAN binding

MPE_IALLREDUCE MPE_IALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER

REQUEST,INTEGER IERROR)

MPE_Ialltoall int MPE_Ialltoall(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*

recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,MPI_Request

*request);

MPE_IALLTOALL MPE_IALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER

SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER

RECVTYPE,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Ialltoallv int MPE_Ialltoallv(void* sendbuf,int *sendcounts,int *sdispls,MPI_Datatype

sendtype,void* recvbuf,int *recvcounts,int *rdispls,MPI_Datatype

recvtype,MPI_Comm comm,MPI_Request *request);

MPE_IALLTOALLV MPE_IALLTOALV(CHOICE SENDBUF,INTEGER

SENDCOUNTS(*),INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE

RECVBUF,INTEGER RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER

RECVTYPE,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Ibarrier int MPE_Ibarrier(MPI_Comm comm, MPI_Request *request);

MPE_IBARRIER MPE_IBARRIER(INTEGER COMM, INTEGER REQUEST, INTEGER

IERROR)

MPE_Ibcast int MPE_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm, MPI_Request *request);

MPE_IBCAST MPE_IBCAST(CHOICE BUFFER, INTEGER COUNT, INTEGER DATATYPE,

INTEGER ROOT, INTEGER COMM, INTEGER REQUEST, INTEGER

IERROR)

MPE_Igather int MPE_Igather(void* sendbuf, int sendcount, MPI_Datatype sendtype, void*

recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm,

MPI_Request *request);

MPE_IGATHER MPE_IGATHER(CHOICE SENDBUF, INTEGER SENDCOUNT, INTEGER

SENDTYPE, CHOICE RECVBUF, INTEGER RECVCOUNT, INTEGER

RECVTYPE, INTEGER ROOT, INTEGER COMM, INTEGER REQUEST,

INTEGER IERROR)

MPE_Igatherv int MPE_Igatherv(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*

recvbuf,int *recvcounts,int *displs,MPI_Datatype recvtype,int root,MPI_Comm

comm,MPI_Request *request);

MPE_IGATHERV MPE_IGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER

SENDTYPE, CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER

DISPLS(*),INTEGER RECVTYPE,INTEGER ROOT,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Ireduce int MPE_Ireduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype

datatype,MPI_Op op,int root,MPI_Comm comm,MPI_Request *request);

MPE_IREDUCE MPE_IREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER ROOT,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPE_Ireduce_scatter int MPE_Ireduce_scatter(void* sendbuf,void* recvbuf,int

*recvcounts,MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,MPI_Request

*request);

MPE_IREDUCE_SCATTER MPE_IREDUCE_SCATTER(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER

RECVCOUNTS(*),INTEGER DATATYPE,INTEGER OP,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

152 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 24. Bindings for non-blocking collective communication (continued)

C and FORTRAN subroutine C and FORTRAN binding

MPE_Iscan int MPE_Iscan(void* sendbuf,void* recvbuf,int count,MPI_Datatype

datatype,MPI_Op op,MPI_Comm comm,MPI_Request *request);

MPE_ISCAN MPE_ISCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER

REQUEST,INTEGER IERROR)

MPE_Iscatter int MPE_Iscatter(void* sendbuf,int sendcount,MPI_Datatype sendtype,void*

recvbuf,int recvcount,MPI_Datatype recvtype,int root,MPI_Comm

comm,MPI_Request *request);

MPE_ISCATTER MPE_ISCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER

SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER

RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER

REQUEST,INTEGER IERROR)

MPE_Iscatterv int MPE_Iscatterv(void* sendbuf,int *sendcounts,int *displs,MPI_Datatype

sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,MPI_Comm

comm,MPI_Request *request);

MPE_ISCATTERV MPE_ISCATTERV(CHOICE SENDBUF,INTEGER SENDCOUNTS(*),INTEGER

DISPLS(*),INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

Appendix B. MPE subroutine bindings 153

154 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Appendix C. MPI subroutine and function summary

Table 25 lists the MPI subroutines and functions that are available for parallel

programming. For descriptions of these subroutines and functions, see IBM Parallel

Environment for AIX: MPI Subroutine Reference.

 Table 25. MPI subroutines and functions

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Abort

MPI::Comm::Abort

MPI_ABORT

Environment

management

Forces all tasks of an MPI job to

terminate.

MPI_Accumulate

MPI::Win::Accumulate

MPI_ACCUMULATE

One-sided

communication

Accumulates, according to the

specified reduction operation, the

contents of the origin buffer to the

specified target buffer.

MPI_Add_error_class

MPI::Add_error_class

MPI_ADD_ERROR_CLASS

External interface Creates a new error class and returns

the value for it.

MPI_Add_error_code

MPI::Add_error_code

MPI_ADD_ERROR_CODE

External interface Creates a new error code and returns

the value for it.

MPI_Add_error_string

MPI::Add_error_string

MPI_ADD_ERROR_STRING

External interface Associates an error string with an

error code or class.

MPI_Address

(none)

MPI_ADDRESS

Derived datatype Returns the address of a location in

memory.

MPI_Allgather

MPI::Comm::Allgather

MPI_ALLGATHER

Collective

communication

Collects messages from each task and

distributes the resulting message to

each.

MPI_Allgatherv

MPI::Comm::Allgatherv

MPI_ALLGATHERV

Collective

communication

Collects messages from each task and

distributes the resulting message to

all tasks. Messages can have variable

sizes and displacements.

MPI_Alloc_mem

MPI::Alloc_mem

MPI_ALLOC_MEM

Memory allocation Allocates storage and returns a

pointer to it.

MPI_Allreduce

MPI::Comm::Allreduce

MPI_ALLREDUCE

Collective

communication

Applies a reduction operation.

MPI_Alltoall

MPI::Comm::Alltoall

MPI_ALLTOALL

Collective

communication

Sends a distinct message from each

task to every task.

MPI_Alltoallv

MPI::Comm::Alltoallv

MPI_ALLTOALLV

Collective

communication

Sends a distinct message from each

task to every task. Messages can have

different sizes and displacements.

© Copyright IBM Corp. 1993, 2005 155

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Alltoallw

MPI::Comm::Alltoallw

MPI_ALLTOALLW

Collective

communication

Sends a distinct message from each

task to every task. Messages can have

different datatypes, sizes, and

displacements.

MPI_Attr_delete

(none)

MPI_ATTR_DELETE

Communicator Removes an attribute value from a

communicator.

MPI_Attr_get

(none)

MPI_ATTR_GET

Communicator Retrieves an attribute value from a

communicator.

MPI_Attr_put

(none)

MPI_ATTR_PUT

Communicator Associates an attribute value with a

communicator.

MPI_Barrier

MPI::Comm::Barrier

MPI_BARRIER

Collective

communication

Blocks each task until all tasks have

called it.

MPI_Bcast

MPI::Comm::Bcast

MPI_BCAST

Collective

communication

Broadcasts a message from root to all

tasks in the group.

MPI_Bsend

MPI::Comm::Bsend

MPI_BSEND

Point-to-point

communication

Performs a blocking buffered mode

send operation.

MPI_Bsend_init

MPI::Comm::Bsend_init

MPI_BSEND_INIT

Point-to-point

communication

Creates a persistent buffered mode

send request.

MPI_Buffer_attach

MPI::Attach_buffer

MPI_BUFFER_ATTACH

Point-to-point

communication

Provides MPI with a message buffer

for sending.

MPI_Buffer_detach

MPI::Detach_buffer

MPI_BUFFER_DETACH

Point-to-point

communication

Detaches the current buffer.

MPI_Cancel

MPI::Request::Cancel

MPI_CANCEL

Point-to-point

communication

Marks a non-blocking operation for

cancellation.

MPI_Cart_coords

MPI::Cartcomm::Get_coords

MPI_CART_COORDS

Topology Translates task rank in a

communicator into Cartesian task

coordinates.

MPI_Cart_create

MPI::Intracomm::Create_cart

MPI_CART_CREATE

Topology Creates a communicator containing

topology information.

MPI_Cart_get

MPI::Cartcomm::Get_topo

MPI_CART_GET

Topology Retrieves Cartesian topology

information from a communicator.

MPI_Cart_map

MPI::Cartcomm::Map

MPI_CART_MAP

Topology Computes placement of tasks on the

physical processor.

156 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Cart_rank

MPI::Cartcomm::Get_cart_rank

MPI_CART_RANK

Topology Translates task coordinates into a task

rank.

MPI_Cart_shift

MPI::Cartcomm::Shift

MPI_CART_SHIFT

Topology Returns shifted source and

destination ranks for a task.

MPI_Cart_sub

MPI::Cartcomm::Sub

MPI_CART_SUB

Topology Partitions a Cartesian communicator

into lower-dimensional subgroups.

MPI_Cartdim_get

MPI::Cartcomm::Get_dim

MPI_CARTDIM_GET

Topology Retrieves the number of Cartesian

dimensions from a communicator.

MPI_Comm_c2f

(none)

(none)

Conversion function Translates a C communicator handle

into a FORTRAN handle to the same

communicator.

MPI_Comm_call_errhandler

MPI::Comm::Call_errhandler

MPI_COMM_CALL_ERRHANDLER

External interface Calls the error handler assigned to

the communicator with the error

code supplied.

(none)

MPI::Comm::Clone

(MPI::Cartcomm::Clone,

MPI::Graphcomm::Clone,

MPI::Intercomm::Clone,

MPI::Intracomm::Clone)

(none)

Communicator Creates a new communicator that is a

duplicate of an existing

communicator.

MPI_Comm_compare

MPI::Comm::Compare

MPI_COMM_COMPARE

Communicator Compares the groups and contexts of

two communicators.

MPI_Comm_create

MPI::Intercomm::Create,

MPI::Intracomm::Create

MPI_COMM_CREATE

Communicator Creates a new communicator with a

given group.

MPI_Comm_create_errhandler

MPI::Comm::Create_errhandler

MPI_COMM_CREATE_ERRHANDLER

Communicator Creates an error handler that can be

attached to communicators.

MPI_Comm_create_keyval

MPI::Comm::Create_keyval

MPI_COMM_CREATE_KEYVAL

Communicator Generates a new communicator

attribute key.

MPI_Comm_delete_attr

MPI::Comm::Delete_attr

MPI_COMM_DELETE_ATTR

Communicator Removes an attribute value from a

communicator.

MPI_Comm_dup

MPI::Cartcomm::Dup,

MPI::Graphcomm::Dup,

MPI::Intercomm::Dup,

MPI::Intracomm::Dup

MPI_COMM_DUP

Communicator Creates a new communicator that is a

duplicate of an existing

communicator.

Appendix C. MPI subroutine and function summary 157

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Comm_f2c

(none)

(none)

Conversion function Returns a C handle to a

communicator.

MPI_Comm_free

MPI::Comm::Free

MPI_COMM_FREE

Communicator Marks a communicator for

deallocation.

MPI_Comm_free_keyval

MPI::Comm::Free_keyval

MPI_COMM_FREE_KEYVAL

Communicator Marks a communicator attribute key

for deallocation.

MPI_Comm_get_attr

MPI::Comm::Get_attr

MPI_COMM_GET_ATTR

Communicator Retrieves the communicator attribute

value identified by the key.

MPI_Comm_get_errhandler

MPI::Comm::Get_errhandler

MPI_COMM_GET_ERRHANDLER

Communicator Retrieves the error handler currently

associated with a communicator.

MPI_Comm_get_name

MPI::Comm::Get_name

MPI_COMM_GET_NAME

External interface Returns the name that was last

associated with a communicator.

MPI_Comm_group

MPI::Comm::Get_group

MPI_COMM_GROUP

Group management Returns the group handle associated

with a communicator.

MPI_Comm_rank

MPI::Comm::Get_rank

MPI_COMM_RANK

Communicator Returns the rank of the local task in

the group associated with a

communicator.

MPI_Comm_remote_group

MPI::Intercomm::Get_remote_group

MPI_COMM_REMOTE_GROUP

Communicator Returns the handle of the remote

group of an inter-communicator.

MPI_Comm_remote_size

MPI::Intercomm::Get_remote_size

MPI_COMM_REMOTE_SIZE

Communicator Returns the size of the remote group

of an inter-communicator.

MPI_Comm_set_attr

MPI::Comm::Set_attr

MPI_COMM_SET_ATTR

Communicator Attaches the communicator attribute

value to the communicator and

associates it with the key.

MPI_Comm_set_errhandler

MPI::Comm::Set_errhandler

MPI_COMM_SET_ERRHANDLER

Communicator Attaches a new error handler to a

communicator.

MPI_Comm_set_name

MPI::Comm::Set_name

MPI_COMM_SET_NAME

External interface Associates a name string with a

communicator.

MPI_Comm_size

MPI::Comm::Get_size

MPI_COMM_SIZE

Communicator Returns the size of the group

associated with a communicator.

MPI_Comm_split

MPI::Intercomm::Split, MPI::Intracomm::Split

MPI_COMM_SPLIT

Communicator Splits a communicator into multiple

communicators based on color and

key.

MPI_Comm_test_inter

MPI::Comm::Is_inter

MPI_COMM_TEST_INTER

Communicator Returns the type of a communicator

(intra-communicator or

inter-communicator).

158 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Dims_create

MPI::Compute_dims

MPI_DIMS_CREATE

Topology Defines a Cartesian grid to balance

tasks.

MPI_Errhandler_c2f

(none)

(none)

Conversion function Translates a C error handler into a

FORTRAN handle to the same error

handler.

MPI_Errhandler_create

(none)

MPI_ERRHANDLER_CREATE

Environment

management

Registers a user-defined error

handler.

MPI_Errhandler_f2c

(none)

(none)

Conversion function Returns a C handle to an error

handler.

MPI_Errhandler_free

MPI::Errhandler::Free

MPI_ERRHANDLER_FREE

Environment

management

Marks an error handler for

deallocation.

MPI_Errhandler_get

(none)

MPI_ERRHANDLER_GET

Environment

management

Gets an error handler associated with

a communicator.

MPI_Errhandler_set

(none)

MPI_ERRHANDLER_SET

Environment

management

Associates a new error handler with

a communicator.

MPI_Error_class

MPI::Get_error_class

MPI_ERROR_CLASS

Environment

management

Returns the error class for the

corresponding error code.

MPI_Error_string

MPI::Get_error_string

MPI_ERROR_STRING

Environment

management

Returns the error string for a given

error code.

MPI_Exscan

MPI::Intracomm::Exscan

MPI_EXSCAN

Collective

communication

Performs a prefix reduction on data

distributed across the group.

MPI_File_c2f

(none)

(none)

Conversion function Translates a C file handle into a

FORTRAN handle to the same file.

MPI_File_call_errhandler

MPI::File::Call_errhandler

MPI_FILE_CALL_ERRHANDLER

External interface Calls the error handler assigned to

the file with the error code supplied.

MPI_File_close

MPI::File::Close

MPI_FILE_CLOSE

MPI-IO Closes a file.

MPI_File_create_errhandler

MPI::File::Create_errhandler

MPI_FILE_CREATE_ERRHANDLER

Environment

management

Registers a user-defined error handler

that you can associate with an open

file.

MPI_File_delete

MPI::File::Delete

MPI_FILE_DELETE

MPI-IO Deletes a file after pending

operations to the file complete.

MPI_File_f2c

(none)

(none)

Conversion function Returns a C handle to a file.

Appendix C. MPI subroutine and function summary 159

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_File_get_amode

MPI::File::Get_amode

MPI_FILE_GET_AMODE

MPI-IO Retrieves the access mode specified

when the file was opened.

MPI_File_get_atomicity

MPI::File::Get_atomicity

MPI_FILE_GET_ATOMICITY

MPI-IO Retrieves the current atomicity mode

in which the file is accessed.

MPI_File_get_byte_offset

MPI::File::Get_byte_offset

MPI_FILE_GET_BYTE_OFFSET

MPI-IO Allows conversion of an offset.

MPI_File_get_errhandler

MPI::File::Get_errhandler

MPI_FILE_GET_ERRHANDLER

Environment

management

Retrieves the error handler currently

associated with a file handle.

MPI_File_get_group

MPI::File::Get_group

MPI_FILE_GET_GROUP

MPI-IO Retrieves the group of tasks that

opened the file.

MPI_File_get_info

MPI::File::Get_info

MPI_FILE_GET_INFO

MPI-IO Returns a new Info object identifying

the hints associated with a file.

MPI_File_get_position

MPI::File::Get_position

MPI_FILE_GET_POSITION

MPI-IO Returns the current position of the

individual file pointer relative to the

current file view.

MPI_File_get_position_shared

MPI::File::Get_position_shared

MPI_FILE_GET_POSITION_SHARED

MPI-IO Returns the current position of the

shared file pointer relative to the

current file view.

MPI_File_get_size

MPI::File::Get_size

MPI_FILE_GET_SIZE

MPI-IO Retrieves the current file size.

MPI_File_get_type_extent

MPI::File::Get_type_extent

MPI_FILE_GET_TYPE_EXTENT

MPI-IO Retrieves the extent of a datatype.

MPI_File_get_view

MPI::File::Get_view

MPI_FILE_GET_VIEW

MPI-IO Retrieves the current file view.

MPI_File_iread

MPI::File::Iread

MPI_FILE_IREAD

MPI-IO Performs a non-blocking read

operation.

MPI_File_iread_at

MPI::File::Iread_at

MPI_FILE_IREAD_AT

MPI-IO Performs a non-blocking read

operation using an explicit offset.

MPI_File_iread_shared

MPI::File::Iread_shared

MPI_FILE_IREAD_SHARED

MPI-IO Performs a non-blocking read

operation using the shared file

pointer.

MPI_File_iwrite

MPI::File::Iwrite

MPI_FILE_IWRITE

MPI-IO Performs a non-blocking write

operation.

MPI_File_iwrite_at

MPI::File::Iwrite_at

MPI_FILE_IWRITE_AT

MPI-IO Performs a non-blocking write

operation using an explicit offset.

160 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_File_iwrite_shared

MPI::File::Iwrite_shared

MPI_FILE_IWRITE_SHARED

MPI-IO Performs a non-blocking write

operation using the shared file

pointer.

MPI_File_open

MPI::File::Open

MPI_FILE_OPEN

MPI-IO Opens a file.

MPI_File_preallocate

MPI::File::Preallocate

MPI_FILE_PREALLOCATE

MPI-IO Ensures that storage space is

allocated for the first size bytes of the

file associated with fh.

MPI_File_read

MPI::File::Read

MPI_FILE_READ

MPI-IO Reads from a file.

MPI_File_read_all

MPI::File::Read_all

MPI_FILE_READ_ALL

MPI-IO Reads from a file collectively.

MPI_File_read_all_begin

MPI::File::Read_all_begin

MPI_FILE_READ_ALL_BEGIN

MPI-IO Initiates a split collective read

operation from a file.

MPI_File_read_all_end

MPI::File::Read_all_end

MPI_FILE_READ_ALL_END

MPI-IO Completes a split collective read

operation from a file.

MPI_File_read_at

MPI::File::Read_at

MPI_FILE_READ_AT

MPI-IO Reads from a file using an explicit

offset.

MPI_File_read_at_all

MPI::File::Read_at_all

MPI_FILE_READ_AT_ALL

MPI-IO Reads from a file collectively using

an explicit offset.

MPI_File_read_at_all_begin

MPI::File::Read_at_all_begin

MPI_FILE_READ_AT_ALL_BEGIN

MPI-IO Initiates a split collective read

operation from a file using an explicit

offset.

MPI_File_read_at_all_end

MPI::File::Read_at_all_end

MPI_FILE_READ_AT_ALL_END

MPI-IO Completes a split collective read

operation from a file using an explicit

offset.

MPI_File_read_ordered

MPI::File::Read_ordered

MPI_FILE_READ_ORDERED

MPI-IO Reads from a file collectively using

the shared file pointer.

MPI_File_read_ordered_begin

MPI::File::Read_ordered_begin

MPI_FILE_READ_ORDERED_BEGIN

MPI-IO Initiates a split collective read

operation from a file using the shared

file pointer.

MPI_File_read_ordered_end

MPI::File::Read_ordered_end

MPI_FILE_READ_ORDERED_END

MPI-IO Completes a split collective read

operation from a file using the shared

file pointer.

MPI_File_read_shared

MPI::File::Read_shared

MPI_FILE_READ_SHARED

MPI-IO Reads from a file using the shared

file pointer.

MPI_File_seek

MPI::File::Seek

MPI_FILE_SEEK

MPI-IO Sets a file pointer.

Appendix C. MPI subroutine and function summary 161

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_File_seek_shared

MPI::File::Seek_shared

MPI_FILE_SEEK_SHARED

MPI-IO Sets a shared file pointer.

MPI_File_set_atomicity

MPI::File::Set_atomicity

MPI_FILE_SET_ATOMICITY

MPI-IO Modifies the current atomicity mode

for an opened file.

MPI_File_set_errhandler

MPI::File::Set_errhandler

MPI_FILE_SET_ERRHANDLER

Environment

management

Associates a new error handler with

a file.

MPI_File_set_info

MPI::File::Set_info

MPI_FILE_SET_INFO

MPI-IO Specifies new hints for an open file.

MPI_File_set_size

MPI::File::Set_size

MPI_FILE_SET_SIZE

MPI-IO Expands or truncates an open file.

MPI_File_set_view

MPI::File::Set_view

MPI_FILE_SET_VIEW

MPI-IO Associates a new view with an open

file.

MPI_File_sync

MPI::File::Sync

MPI_FILE_SYNC

MPI-IO Commits file updates of an open file

to storage devices.

MPI_File_write

MPI::File::Write

MPI_FILE_WRITE

MPI-IO Writes to a file.

MPI_File_write_all

MPI::File::Write_all

MPI_FILE_WRITE_ALL

MPI-IO Writes to a file collectively.

MPI_File_write_all_begin

MPI::File::Write_all_begin

MPI_FILE_WRITE_ALL_BEGIN

MPI-IO Initiates a split collective write

operation to a file.

MPI_File_write_all_end

MPI::File::Write_all_end

MPI_FILE_WRITE_ALL_END

MPI-IO Completes a split collective write

operation to a file.

MPI_File_write_at

MPI::File::Write_at

MPI_FILE_WRITE_AT

MPI-IO Performs a blocking write operation

using an explicit offset.

MPI_File_write_at_all

MPI::File::Write_at_all

MPI_FILE_WRITE_AT_ALL

MPI-IO Performs a blocking write operation

collectively using an explicit offset.

MPI_File_write_at_all_begin

MPI::File::Write_at_all_begin

MPI_FILE_WRITE_AT_ALL_BEGIN

MPI-IO Initiates a split collective write

operation to a file using an explicit

offset.

MPI_File_write_at_all_end

MPI::File::Write_at_all_end

MPI_FILE_WRITE_AT_ALL_END

MPI-IO Completes a split collective write

operation to a file using an explicit

offset.

MPI_File_write_ordered

MPI::File::Write_ordered

MPI_FILE_WRITE_ORDERED

MPI-IO Writes to a file collectively using the

shared file pointer.

162 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_File_write_ordered_begin

MPI::File::Write_ordered_begin

MPI_FILE_WRITE_ORDERED_BEGIN

MPI-IO Initiates a split collective write

operation to a file using the shared

file pointer.

MPI_File_write_ordered_end

MPI::File::Write_ordered_end

MPI_FILE_WRITE_ORDERED_END

MPI-IO Completes a split collective write

operation to a file using the shared

file pointer.

MPI_File_write_shared

MPI::File::Write_shared

MPI_FILE_WRITE_SHARED

MPI-IO Writes to a file using the shared file

pointer.

MPI_Finalize

MPI::Finalize

MPI_FINALIZE

Environment

management

Terminates all MPI processing.

MPI_Finalized

MPI::Is_finalized

MPI_FINALIZED

Environment

management

Returns true if MPI_FINALIZE has

completed.

MPI_Free_mem

MPI::Free_mem

MPI_FREE_MEM

Memory allocation Frees a block of storage.

MPI_Gather

MPI::Comm::Gather

MPI_GATHER

Collective

communication

Collects individual messages from

each task in a group at the root task.

MPI_Gatherv

MPI::Comm::Gatherv

MPI_GATHERV

Collective

communication

Collects individual messages from

each task in comm at the root task.

Messages can have different sizes and

displacements.

MPI_Get

MPI::Win::Get

MPI_GET

One-sided

communication

Transfers data from a window at the

target task to the origin task.

MPI_Get_address

MPI::Get_address

MPI_GET_ADDRESS

Derived datatype Returns the address of a location in

memory.

MPI_Get_count

MPI::Status::Get_count

MPI_GET_COUNT

Point-to-point

communication

Returns the number of elements in a

message.

MPI_Get_elements

MPI::Status::Get_elements

MPI_GET_ELEMENTS

Derived datatype Returns the number of basic elements

in a message.

MPI_Get_processor_name

MPI::Get_processor_name

MPI_GET_PROCESSOR_NAME

Environment

management

Returns the name of the local

processor.

MPI_Get_version

MPI::Get_version

MPI_GET_VERSION

Environment

management

Returns the version of the MPI

standard supported.

MPI_Graph_create

MPI::Intracomm::Create_graph

MPI_GRAPH_CREATE

Topology Creates a new communicator

containing graph topology

information.

Appendix C. MPI subroutine and function summary 163

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Graph_get

MPI::Graphcomm::Get_topo

MPI_GRAPH_GET

Topology Retrieves graph topology information

from a communicator.

MPI_Graph_map

MPI::Graphcomm::Map

MPI_GRAPH_MAP

Topology Computes placement of tasks on the

physical processor.

MPI_Graph_neighbors

MPI::Graphcomm::Get_neighbors

MPI_GRAPH_NEIGHBORS

Topology Returns the neighbors of the given

task.

MPI_Graph_neighbors_count

MPI::Graphcomm::Get_neighbors_count

MPI_GRAPH_NEIGHBORS_COUNT

Topology Returns the number of neighbors of

the given task.

MPI_Graphdims_get

MPI::Graphcomm::Get_dims

MPI_GRAPHDIMS_GET

Topology Retrieves graph topology information

from a communicator.

MPI_Grequest_complete

MPI::Grequest::Complete

MPI_GREQUEST_COMPLETE

External interface Marks the generalized request

complete.

MPI_Grequest_start

MPI::Grequest::Start

MPI_GREQUEST_START

External interface Initializes a generalized request.

MPI_Group_c2f

(none)

(none)

Conversion function Translates a C group handle into a

FORTRAN handle to the same group.

MPI_Group_compare

MPI::Group::Compare

MPI_GROUP_COMPARE

Group management Compares the contents of two task

groups.

MPI_Group_difference

MPI::Group::Difference

MPI_GROUP_DIFFERENCE

Group management Creates a new group that is the

difference of two existing groups.

MPI_Group_excl

MPI::Group::Excl

MPI_GROUP_EXCL

Group management Removes selected tasks from an

existing group to create a new group.

MPI_Group_f2c

(none)

(none)

Conversion function Returns a C handle to a group.

MPI_Group_free

MPI::Group::Free

MPI_GROUP_FREE

Group management Marks a group for deallocation.

MPI_Group_incl

MPI::Group::Incl

MPI_GROUP_INCL

Group management Creates a new group consisting of

selected tasks from an existing group.

MPI_Group_intersection

MPI::Group::Intersect

MPI_GROUP_INTERSECTION

Group management Creates a new group that is the

intersection of two existing groups.

MPI_Group_range_excl

MPI::Group::Range_excl

MPI_GROUP_RANGE_EXCL

Group management Creates a new group by excluding

selected tasks of an existing group.

164 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Group_range_incl

MPI::Group::Range_incl

MPI_GROUP_RANGE_INCL

Group management Creates a new group consisting of

selected ranges of tasks from an

existing group.

MPI_Group_rank

MPI::Group::Get_rank

MPI_GROUP_RANK

Group management Returns the rank of the local task

with respect to group.

MPI_Group_size

MPI::Group::Get_size

MPI_GROUP_SIZE

Group management Returns the number of tasks in a

group.

MPI_Group_translate_ranks

MPI::Group::Translate_ranks

MPI_GROUP_TRANSLATE_RANKS

Group management Converts task ranks of one group

into ranks of another group.

MPI_Group_union

MPI::Group::Union

MPI_GROUP_UNION

Group management Creates a new group that is the union

of two existing groups.

MPI_Ibsend

MPI::Comm::Ibsend

MPI_IBSEND

Point-to-point

communication

Performs a non-blocking buffered

send.

MPI_Info_c2f

(none)

(none)

Conversion function Translates a C Info object handle into

a FORTRAN handle to the same Info

object.

MPI_Info_create

MPI::Info::Create

MPI_INFO_CREATE

Info object Creates a new, empty Info object.

MPI_Info_delete

MPI::Info::Delete

MPI_INFO_DELETE

Info object Deletes a (key, value) pair from an

Info object.

MPI_Info_dup

MPI::Info::Dup

MPI_INFO_DUP

Info object Duplicates an Info object.

MPI_Info_f2c

(none)

(none)

Conversion function Returns a C handle to an Info object.

MPI_Info_free

MPI::Info::Free

MPI_INFO_FREE

Info object Frees an Info object and sets its

handle to MPI_INFO_NULL.

MPI_Info_get

MPI::Info::Get

MPI_INFO_GET

Info object Retrieves the value associated with

key in an Info object.

MPI_Info_get_nkeys

MPI::Info::Get_nkeys

MPI_INFO_GET_NKEYS

Info object Returns the number of keys defined

in an Info object.

MPI_Info_get_nthkey

MPI::Info::Get_nthkey

MPI_INFO_GET_NTHKEY

Info object Retrieves the nth key defined in an

Info object.

MPI_Info_get_valuelen

MPI::Info::Get_valuelen

MPI_INFO_GET_VALUELEN

Info object Retrieves the length of the value

associated with a key of an Info

object.

Appendix C. MPI subroutine and function summary 165

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Info_set

MPI::Info::Set

MPI_INFO_SET

Info object Adds a (key, value) pair to an Info

object.

MPI_Init

MPI::Init

MPI_INIT

Environment

management

Initializes MPI.

MPI_Init_thread

MPI::Init_thread

MPI_INIT_THREAD

Environment

management

Initializes MPI and the MPI threads

environment.

MPI_Initialized

MPI::Is_initialized

MPI_INITIALIZED

Environment

management

Determines if MPI is initialized.

MPI_Intercomm_create

MPI::Intracomm::Create_intercomm

MPI_INTERCOMM_CREATE

Communicator Creates an inter-communicator from

two intra-communicators.

MPI_Intercomm_merge

MPI::Intercomm::Merge

MPI_INTERCOMM_MERGE

Communicator Creates an intra-communicator by

merging the local and remote groups

of an inter-communicator.

MPI_Iprobe

MPI::Comm::Iprobe

MPI_IPROBE

Point-to-point

communication

Checks to see if a message matching

source, tag, and comm has arrived.

MPI_Irecv

MPI::Comm::Irecv

MPI_IRECV

Point-to-point

communication

Performs a non-blocking receive

operation.

MPI_Irsend

MPI::Comm::Irsend

MPI_IRSEND

Point-to-point

communication

Performs a non-blocking ready send

operation.

MPI_Is_thread_main

MPI::Is_thread_main

MPI_IS_THREAD_MAIN

Environment

management

Determines whether the calling

thread is the thread that called

MPI_INIT or MPI_INIT_THREAD.

MPI_Isend

MPI::Comm::Isend

MPI_ISEND

Point-to-point

communication

Performs a non-blocking standard

mode send operation.

MPI_Issend

MPI::Comm::Issend

MPI_ISSEND

Point-to-point

communication

Performs a non-blocking synchronous

mode send operation.

MPI_Keyval_create

(none)

MPI_KEYVAL_CREATE

Communicator Generates a new communicator

attribute key.

MPI_Keyval_free

(none)

MPI_KEYVAL_FREE

Communicator Marks a communicator attribute key

for deallocation.

MPI_Op_c2f

(none)

(none)

Conversion function Translates a C reduction operation

handle into a FORTRAN handle to

the same operation.

MPI_Op_create

MPI::Op::Init

MPI_OP_CREATE

Collective

communication

Binds a user-defined reduction

operation to an op handle.

166 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Op_f2c

(none)

(none)

Conversion function Returns a C reduction operation

handle to an operation.

MPI_Op_free

MPI::Op::Free

MPI_OP_FREE

Collective

communication

Marks a user-defined reduction

operation for deallocation.

MPI_Pack

MPI::Datatype::Pack

MPI_PACK

Derived datatype Packs the message in the specified

send buffer into the specified buffer

space.

MPI_Pack_external

MPI::Datatype::Pack_external

MPI_PACK_EXTERNAL

Derived datatype Packs the message in the specified

send buffer into the specified buffer

space, using the external32 data

format.

MPI_Pack_external_size

MPI::Datatype::Pack_external_size

MPI_PACK_EXTERNAL_SIZE

Derived datatype Returns the number of bytes required

to hold the data, using the external32

data format.

MPI_Pack_size

MPI::Datatype::Pack_size

MPI_PACK_SIZE

Derived datatype Returns the number of bytes required

to hold the data.

MPI_Pcontrol

MPI::Pcontrol

MPI_PCONTROL

Environment

management

Provides profile control.

MPI_Probe

MPI::Comm::Probe

MPI_PROBE

Point-to-point

communication

Waits until a message matching

source, tag, and comm arrives.

MPI_Put

MPI::Win::Put

MPI_PUT

One-sided

communication

Transfers data from the origin task to

a window at the target task.

MPI_Query_thread

MPI::Query_thread

MPI_QUERY_THREAD

Environment

management

Returns the current level of threads

support.

MPI_Recv

MPI::Comm::Recv

MPI_RECV

Point-to-point

communication

Performs a blocking receive

operation.

MPI_Recv_init

MPI::Comm::Recv_init

MPI_RECV_INIT

Point-to-point

communication

Creates a persistent receive request.

MPI_Reduce

MPI::Comm::Reduce

MPI_REDUCE

Collective

communication

Applies a reduction operation to the

vector sendbuf over the set of tasks

specified by comm and places the

result in recvbuf on root.

MPI_Reduce_scatter

MPI::Comm::Reduce_scatter

MPI_REDUCE_SCATTER

Collective

communication

Applies a reduction operation to the

vector sendbuf over the set of tasks

specified by comm and scatters the

result according to the values in

recvcounts.

Appendix C. MPI subroutine and function summary 167

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Register_datarep

MPI::Register_datarep

MPI_REGISTER_DATAREP

MPI-IO Registers a data representation.

MPI_Request_c2f

(none)

(none)

Conversion function Translates a C request handle into a

FORTRAN handle to the same

request.

MPI_Request_f2c

(none)

(none)

Conversion function Returns a C handle to a request.

MPI_Request_free

MPI::Request::Free

MPI_REQUEST_FREE

Point-to-point

communication

Marks a request for deallocation.

MPI_Request_get_status

MPI::Request::Get_status

MPI_REQUEST_GET_STATUS

MPI_STATUS object Accesses the information associated

with a request, without freeing the

request.

MPI_Rsend

MPI::Comm::Rsend

MPI_RSEND

Point-to-point

communication

Performs a blocking ready mode

send operation.

MPI_Rsend_init

MPI::Comm::Rsend_init

MPI_RSEND_INIT

Point-to-point

communication

Creates a persistent ready mode send

request.

MPI_Scan

MPI::Intracomm::Scan

MPI_SCAN

Collective

communication

Performs a parallel prefix reduction

on data distributed across a group.

MPI_Scatter

MPI::Comm::Scatter

MPI_SCATTER

Collective

communication

Distributes individual messages from

root to each task in comm.

MPI_Scatterv

MPI::Comm::Scatterv

MPI_SCATTERV

Collective

communication

Distributes individual messages from

root to each task in comm. Messages

can have different sizes and

displacements.

MPI_Send

MPI::Comm::Send

MPI_SEND

Point-to-point

communication

Blocking standard mode send.

MPI_Send_init

MPI::Comm::Send_init

MPI_SEND_INIT

Point-to-point

communication

Creates a persistent standard mode

send request.

MPI_Sendrecv

MPI::Comm::Sendrecv

MPI_SENDRECV

Point-to-point

communication

Performs a blocking send and receive

operation.

MPI_Sendrecv_replace

MPI::Comm::Sendrecv_replace

MPI_SENDRECV_REPLACE

Point-to-point

communication

Performs a blocking send and receive

operation using a common buffer.

(none)

(none)

MPI_SIZEOF

Derived datatype Returns the size in bytes of the

machine representation of the given

variable.

168 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Ssend

MPI::Comm::Ssend

MPI_SSEND

Point-to-point

communication

Performs a blocking synchronous

mode send operation.

MPI_Ssend_init

MPI::Comm::Ssend_init

MPI_SSEND_INIT

Point-to-point

communication

Creates a persistent synchronous

mode send request.

MPI_Start

MPI::Prequest::Start

MPI_START

Point-to-point

communication

Activates a persistent request

operation.

MPI_Startall

MPI::Prequest::Startall

MPI_STARTALL

Point-to-point

communication

Activates a collection of persistent

request operations.

MPI_Status_c2f

(none)

(none)

Conversion function Translates a C status object into a

FORTRAN status object.

MPI_Status_f2c

(none)

(none)

Conversion function Converts a FORTRAN status object

into a C status object.

MPI_Status_set_cancelled

MPI::Status::Set_cancelled

MPI_STATUS_SET_CANCELLED

External interface Defines cancellation information for a

request.

MPI_Status_set_elements

MPI::Status::Set_elements

MPI_STATUS_SET_ELEMENTS

External interface Defines element information for a

request.

MPI_Test

MPI::Request::Test

MPI_TEST

Point-to-point

communication

Checks to see if a non-blocking

operation has completed.

MPI_Test_cancelled

MPI::Status::Is_cancelled

MPI_TEST_CANCELLED

Point-to-point

communication

Tests whether a non-blocking

operation was cancelled.

MPI_Testall

MPI::Request::Testall

MPI_TESTALL

Point-to-point

communication

Tests a collection of non-blocking

operations for completion.

MPI_Testany

MPI::Request::Testany

MPI_TESTANY

Point-to-point

communication

Tests for the completion of any

specified non-blocking operation.

MPI_Testsome

MPI::Request::Testsome

MPI_TESTSOME

Point-to-point

communication

Tests a collection of non-blocking

operations for completion.

MPI_Topo_test

MPI::Comm::Get_topology

MPI_TOPO_TEST

Topology Returns the type of virtual topology

associated with a communicator.

MPI_Type_c2f

(none)

(none)

Conversion function Translates a C datatype handle into a

FORTRAN handle to the same

datatype.

MPI_Type_commit

MPI::Datatype::Commit

MPI_TYPE_COMMIT

Derived datatype Makes a datatype ready for use in

communication.

Appendix C. MPI subroutine and function summary 169

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Type_contiguous

MPI::Datatype::Create_contiguous

MPI_TYPE_CONTIGUOUS

Derived datatype Returns a new datatype that

represents the concatenation of count

instances of oldtype.

MPI_Type_create_darray

MPI::Datatype::Create_darray

MPI_TYPE_CREATE_DARRAY

Derived datatype Generates the datatypes

corresponding to an HPF-like

distribution of an ndims-dimensional

array of oldtype elements onto an

ndims-dimensional grid of logical

tasks.

MPI_Type_create_f90_complex

MPI::Datatype::Create_f90_complex

MPI_TYPE_CREATE_F90_COMPLEX

Derived datatype Returns a predefined MPI datatype

that matches a COMPLEX variable of

KIND selected_real_kind(p, r).

MPI_Type_create_f90_integer

MPI::Datatype::Create_f90_integer

MPI_TYPE_CREATE_F90_INTEGER

Derived datatype Returns a predefined MPI datatype

that matches an INTEGER variable of

KIND selected_integer_kind(r).

MPI_Type_create_f90_real

MPI::Datatype::Create_f90_real

MPI_TYPE_CREATE_F90_REAL

Derived datatype Returns a predefined MPI datatype

that matches a REAL variable of

KIND selected_real_kind(p, r).

MPI_Type_create_hindexed

MPI::Datatype::Create_hindexed

MPI_TYPE_CREATE_HINDEXED

Derived datatype Returns a new datatype that

represents count blocks. Each block is

defined by an entry in

array_of_blocklengths and

array_of_displacements. Displacements

are expressed in bytes.

MPI_Type_create_hvector

MPI::Datatype::Create_hvector

MPI_TYPE_CREATE_HVECTOR

Derived datatype Returns a new datatype that

represents equally-spaced blocks. The

spacing between the start of each

block is given in bytes.

MPI_Type_create_indexed_block

MPI::Datatype::Create_indexed_block

MPI_TYPE_CREATE_INDEXED_BLOCK

Derived datatype Returns a new datatype that

represents count blocks.

MPI_Type_create_keyval

MPI::Datatype::Create_keyval

MPI_TYPE_CREATE_KEYVAL

Derived datatype Generates a new attribute key for a

datatype.

MPI_Type_create_resized

MPI::Datatype::Create_resized

MPI_TYPE_CREATE_RESIZED

Derived datatype Duplicates a datatype and changes

the upper bound, lower bound, and

extent.

MPI_Type_create_struct

MPI::Datatype::Create_struct

MPI_TYPE_CREATE_STRUCT

Derived datatype Returns a new datatype that

represents count blocks. Each block is

defined by an entry in

array_of_blocklengths,

array_of_displacements, and

array_of_types. Displacements are

expressed in bytes.

MPI_Type_create_subarray

MPI::Datatype::Create_subarray

MPI_TYPE_CREATE_SUBARRAY

Derived datatype Returns a new datatype that

represents an ndims-dimensional

subarray of an ndims-dimensional

array.

170 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Type_delete_attr

MPI::Datatype::Delete_attr

MPI_TYPE_DELETE_ATTR

Derived datatype Deletes an attribute from a datatype.

MPI_Type_dup

MPI::Datatype::Dup

MPI_TYPE_DUP

Derived datatype Duplicates the existing type with

associated key values.

MPI_Type_extent

(none)

MPI_TYPE_EXTENT

Derived datatype Returns the extent of any defined

datatype.

MPI_Type_f2c

(none)

(none)

Conversion function Returns a C handle to a datatype.

MPI_Type_free

MPI::Datatype::Free

MPI_TYPE_FREE

Derived datatype Marks a derived datatype for

deallocation and sets its handle to

MPI_DATATYPE_NULL.

MPI_Type_free_keyval

MPI::Datatype::Free_keyval

MPI_TYPE_FREE_KEYVAL

Derived datatype Frees a datatype key value.

MPI_Type_get_attr

MPI::Datatype::Get_attr

MPI_TYPE_GET_ATTR

Derived datatype Attaches an attribute to a datatype.

MPI_Type_get_contents

MPI::Datatype::Get_contents

MPI_TYPE_GET_CONTENTS

Derived datatype Obtains the arguments used in the

creation of the datatype.

MPI_Type_get_envelope

MPI::Datatype::Get_envelope

MPI_TYPE_GET_ENVELOPE

Derived datatype Determines the constructor that was

used to create the datatype.

MPI_Type_get_extent

MPI::Datatype::Get_extent

MPI_TYPE_GET_EXTENT

Derived datatype Returns the lower bound and the

extent of any defined datatype.

MPI_Type_get_name

MPI::Datatype::Get_name

MPI_TYPE_GET_NAME

External interface Returns the name that was last

associated with a datatype.

MPI_Type_get_true_extent

MPI::Datatype::Get_true_extent

MPI_TYPE_GET_TRUE_EXTENT

Derived datatype Returns the true extent of any

defined datatype.

MPI_Type_hindexed

(none)

MPI_TYPE_HINDEXED

Derived datatype Returns a new datatype that

represents count distinct blocks with

offsets expressed in bytes.

MPI_Type_hvector

(none)

MPI_TYPE_HVECTOR

Derived datatype Returns a new datatype of count

blocks with stride expressed in bytes.

MPI_Type_indexed

MPI::Datatype::Create_indexed

MPI_TYPE_INDEXED

Derived datatype Returns a new datatype that

represents count blocks with stride in

terms of defining type.

MPI_Type_lb

(none)

MPI_TYPE_LB

Derived datatype Returns the lower bound of a

datatype.

Appendix C. MPI subroutine and function summary 171

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Type_match_size

MPI::Datatype::Match_size

MPI_TYPE_CREATE_MATCH_SIZE

Derived datatype Returns a reference (handle) to one of

the predefined named datatypes, not

a duplicate.

MPI_Type_set_attr

MPI::Datatype::Set_attr

MPI_TYPE_SET_ATTR

Derived datatype Attaches the datatype attribute value

to the datatype and associates it with

the key.

MPI_Type_set_name

MPI::Datatype::Set_name

MPI_TYPE_SET_NAME

External interface Associates a name string with a

datatype.

MPI_Type_size

MPI::Datatype::Get_size

MPI_TYPE_SIZE

Derived datatype Returns the number of bytes

represented by any defined datatype.

MPI_Type_struct

(none)

MPI_TYPE_STRUCT

Derived datatype Returns a new datatype that

represents count blocks, each with a

distinct format and offset.

MPI_Type_ub

(none)

MPI_TYPE_UB

Derived datatype Returns the upper bound of a

datatype.

MPI_Type_vector

MPI::Datatype::Create_vector

MPI_TYPE_VECTOR

Derived datatype Returns a new datatype that

represents equally-spaced blocks of

replicated data.

MPI_Unpack

MPI::Datatype::Unpack

MPI_UNPACK

Derived datatype Unpacks the message into the

specified receive buffer from the

specified packed buffer.

MPI_Unpack_external

MPI::Datatype::Unpack_external

MPI_UNPACK_EXTERNAL

Derived datatype Unpacks the message into the

specified receive buffer from the

specified packed buffer, using the

external32 data format.

MPI_Wait

MPI::Request::Wait

MPI_WAIT

Point-to-point

communication

Waits for a non-blocking operation to

complete.

MPI_Waitall

MPI::Request::Waitall

MPI_WAITALL

Point-to-point

communication

Waits for a collection of non-blocking

operations to complete.

MPI_Waitany

MPI::Request::Waitany

MPI_WAITANY

Point-to-point

communication

Waits for any specified non-blocking

operation to complete.

MPI_Waitsome

MPI::Request::Waitsome

MPI_WAITSOME

Point-to-point

communication

Waits for at least one of a list of

non-blocking operations to complete.

MPI_Win_c2f

(none)

(none)

Conversion function Translates a C window handle into a

FORTRAN handle to the same

window.

MPI_Win_call_errhandler

MPI::Win::Call_errhandler

MPI_WIN_CALL_ERRHANDLER

External interface Calls the error handler assigned to

the window with the error code

supplied.

172 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Win_complete

MPI::Win::Complete

MPI_WIN_COMPLETE

One-sided

communication

Completes an RMA access epoch on a

window object.

MPI_Win_create

MPI::Win::Create

MPI_WIN_CREATE

One-sided

communication

Allows each task in an

intra-communicator group to specify

a “window” in its memory that is

made accessible to accesses by

remote tasks.

MPI_Win_create_errhandler

MPI::Win::Create_errhandler

MPI_WIN_CREATE_ERRHANDLER

One-sided

communication

Creates an error handler that can be

attached to windows.

MPI_Win_create_keyval

MPI::Win::Create_keyval

MPI_WIN_CREATE_KEYVAL

One-sided

communication

Generates a new window attribute

key.

MPI_Win_delete_attr

MPI::Win::Delete_attr

MPI_WIN_DELETE_ATTR

One-sided

communication

Deletes an attribute from a window.

MPI_Win_f2c

(none)

(none)

Conversion function Returns a C handle to a window.

MPI_Win_fence

MPI::Win::Fence

MPI_WIN_FENCE

One-sided

communication

Synchronizes RMA calls on a

window.

MPI_Win_free

MPI::Win::Free

MPI_WIN_FREE

One-sided

communication

Frees the window object and returns

a null handle (equal to

MPI_WIN_NULL).

MPI_Win_free_keyval

MPI::Win::Free_keyval

MPI_WIN_FREE_KEYVAL

One-sided

communication

Marks a window attribute key for

deallocation.

MPI_Win_get_attr

MPI::Win::Get_attr

MPI_WIN_GET_ATTR

One-sided

communication

Retrieves the window attribute value

identified by the key.

MPI_Win_get_errhandler

MPI::Win::Get_errhandler

MPI_WIN_GET_ERRHANDLER

One-sided

communication

Retrieves the error handler currently

associated with a window.

MPI_Win_get_group

MPI::Win::Get_group

MPI_WIN_GET_GROUP

One-sided

communication

Returns a duplicate of the group of

the communicator used to create a

window.

MPI_Win_get_name

MPI::Win::Get_name

MPI_WIN_GET_NAME

External interface Returns the name that was last

associated with a window.

MPI_Win_lock

MPI::Win::Lock

MPI_WIN_LOCK

One-sided

communication

Starts an RMA access epoch at the

target task.

MPI_Win_post

MPI::Win::Post

MPI_WIN_POST

One-sided

communication

Starts an RMA exposure epoch for a

local window.

Appendix C. MPI subroutine and function summary 173

Table 25. MPI subroutines and functions (continued)

Subroutine or function name:

C

C++

FORTRAN Type Description

MPI_Win_set_attr

MPI::Win::Set_attr

MPI_WIN_SET_ATTR

One-sided

communication

Attaches the window attribute value

to the window and associates it with

the key.

MPI_Win_set_errhandler

MPI::Win::Set_errhandler

MPI_WIN_SET_ERRHANDLER

One-sided

communication

Attaches a new error handler to a

window.

MPI_Win_set_name

MPI::Win::Set_name

MPI_WIN_SET_NAME

External interface Associates a name string with a

window.

MPI_Win_start

MPI::Win::Start

MPI_WIN_START

One-sided

communication

Starts an RMA access epoch for a

window object.

MPI_Win_test

MPI::Win::Test

MPI_WIN_TEST

One-sided

communication

Tries to complete an RMA exposure

epoch.

MPI_Win_unlock

MPI::Win::Unlock

MPI_WIN_UNLOCK

One-sided

communication

Completes an RMA access epoch at

the target task.

MPI_Win_wait

MPI::Win::Wait

MPI_WIN_WAIT

One-sided

communication

Completes an RMA exposure epoch.

MPI_Wtick

MPI::Wtick

MPI_WTICK

Environment

management

Returns the resolution of

MPI_WTIME in seconds.

MPI_Wtime

MPI::Wtime

MPI_WTIME

Environment

management

Returns the current value of time as a

floating-point value.

174 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Appendix D. MPI subroutine bindings

The tables in this appendix summarize the binding information for all of the MPI

subroutines listed in IBM Parallel Environment for AIX: MPI Subroutine Reference.

Note: FORTRAN refers to FORTRAN 77 bindings that are officially supported for

MPI. However, FORTRAN 77 bindings can be used by FORTRAN 90.

FORTRAN 90 and High Performance FORTRAN (HPF) offer array section

and assumed shape arrays as parameters on calls. These are not safe with

MPI.

The binding information is divided into these categories:

v “Bindings for collective communication”

v “Bindings for communicators” on page 179

v “Bindings for conversion functions” on page 182

v “Bindings for derived datatypes” on page 183

v “Bindings for environment management” on page 189

v “Bindings for external interfaces” on page 191

v “Bindings for group management” on page 193

v “Bindings for Info objects” on page 195

v “Bindings for memory allocation” on page 196

v “Bindings for MPI-IO” on page 197

v “Bindings for MPI_Status objects” on page 204

v “Bindings for one-sided communication” on page 205

v “Bindings for point-to-point communication” on page 208

v “Binding for profiling control” on page 213

v “Bindings for topologies” on page 214

Bindings for collective communication

Table 26 lists the bindings for collective communication subroutines.

 Table 26. Bindings for collective communication

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Allgather int MPI_Allgather(void* sendbuf,int sendcount,MPI_Datatype

sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype, MPI_Comm

comm);

MPI::Comm::Allgather void MPI::Comm::Allgather(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount, const

MPI::Datatype& recvtype) const;

MPI_ALLGATHER MPI_ALLGATHER(CHOICE SENDBUF,INTEGER

SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,INTEGER

IERROR)

© Copyright IBM Corp. 1993, 2005 175

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Table 26. Bindings for collective communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Allgatherv int MPI_Allgatherv(void* sendbuf,int sendcount,MPI_Datatype

sendtype,void* recvbuf,int *recvcounts,int *displs, MPI_Datatype

recvtype,MPI_Comm comm);

MPI::Comm::Allgatherv void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, const int recvcounts[], const int

displs[], const MPI::Datatype& recvtype) const;

MPI_ALLGATHERV MPI_ALLGATHERV(CHOICE SENDBUF,INTEGER

SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNTS(*),INTEGER DISPLS(*),INTEGER

RECVTYPE,INTEGER COMM,INTEGER IERROR)

MPI_Allreduce int MPI_Allreduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype

datatype,MPI_Op op,MPI_Comm comm);

MPI::Comm::Allreduce void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int

count, const MPI::Datatype& datatype, const MPI::Op& op) const;

MPI_ALLREDUCE MPI_ALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER

COMM,INTEGER IERROR)

MPI_Alltoall int MPI_Alltoall(void* sendbuf,int sendcount,MPI_Datatype

sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype, MPI_Comm

comm);

MPI::Comm::Alltoall void MPI::Comm::Alltoall(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount, const

MPI::Datatype& recvtype) const;

MPI_ALLTOALL MPI_ALLTOALL(CHOICE SENDBUF,INTEGER

SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,INTEGER

IERROR)

MPI_Alltoallv int MPI_Alltoallv(void* sendbuf,int *sendcounts,int

sdispls,MPI_Datatype sendtype,void recvbuf,int *recvcounts,int

*rdispls,MPI_Datatype recvtype,MPI_Comm comm);

MPI::Comm::Alltoallv void MPI::Comm::Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], const MPI::Datatype& sendtype, void* recvbuf, const

int recvcounts[], const int rdispls[], const MPI::Datatype& recvtype) const;

MPI_ALLTOALLV MPI_ALLTOALLV(CHOICE SENDBUF,INTEGER

SENDCOUNTS(*),INTEGER SDISPLS(*),INTEGER

SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER

RECVTYPE,INTEGER COMM,INTEGER IERROR)

MPI_Alltoallw int MPI_Alltoallw(void* sendbuf, int sendcounts[], int sdispls[],

MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[], int rdispls[],

MPI_Datatype recvtypes[], MPI_Comm comm);

MPI::Comm::Alltoallw void MPI::Comm::Alltoallw(const void *sendbuf, const int sendcounts[],

const int sdispls[], const MPI::Datatype sendtypes[], void *recvbuf, const

int recvcounts[], const int rdispls[], const MPI::Datatype recvtypes[])

const;

176 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 26. Bindings for collective communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_ALLTOALLW MPI_ALLTOALLW(CHOICE SENDBUF(*), INTEGER

SENDCOUNTS(*), INTEGER SDISPLS(*), INTEGER SENDTYPES(*),

CHOICE RECVBUF, INTEGER RECVCOUNTS(*), INTEGER

RDISPLS(*), INTEGER RECVTYPES(*), INTEGER COMM, INTEGER

IERROR)

MPI_Barrier int MPI_Barrier(MPI_Comm comm);

MPI::Comm::Barrier() void MPI::Comm::Barrier() const;

MPI_BARRIER MPI_BARRIER(INTEGER COMM,INTEGER IERROR)

MPI_Bcast int MPI_Bcast(void* buffer,int count,MPI_Datatype datatype,int

root,MPI_Comm comm);

MPI::Comm::Bcast void MPI::Comm::Bcast(void* buffer, int count, const MPI::Datatype&

datatype, int root) const;

MPI_BCAST MPI_BCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER

DATATYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

MPI_Exscan int MPI_Exscan(void *sendbuf, void *recvbuf, int count, MPI_Datatype

datatype, MPI_Op op, MPI_Comm comm);

MPI::Intracomm::Exscan void MPI::Intracomm::Exscan(const void* sendbuf, void* recvbuf, int

count, const MPI::Datatype& datatype, const MPI::Op& op) const;

MPI_EXSCAN MPI_EXSCAN(CHOICE SENDBUF, CHOICE RECVBUF, INTEGER

COUNT, INTEGER DATATYPE, INTEGER OP, INTEGER COMM,

INTEGER IERROR)

MPI_Gather int MPI_Gather(void* sendbuf,int sendcount,MPI_Datatype

sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype,int

root,MPI_Comm comm);

MPI::Comm::Gather void MPI::Comm::Gather(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount, const

MPI::Datatype& recvtype, int root) const;

MPI_GATHER MPI_GATHER(CHOICE SENDBUF,INTEGER

SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,INTEGER

COMM,INTEGER IERROR)

MPI_Gatherv int MPI_Gatherv(void* sendbuf,int sendcount,MPI_Datatype

sendtype,void* recvbuf,int *recvcounts,int *displs,MPI_Datatype

recvtype,int root,MPI_Comm comm);

MPI::Comm::Gatherv void MPI::Comm::Gatherv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, const int recvcounts[], const int

displs[], const MPI::Datatype& recvtype, int root) const;

MPI_GATHERV MPI_GATHERV(CHOICE SENDBUF,INTEGER

SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNTS(*),INTEGER DISPLS(*),INTEGER

RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

MPI_Op_create int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op

*op);

MPI::Op::Init void MPI::Op::Init(MPI::User_function *func, bool commute);

MPI_OP_CREATE MPI_OP_CREATE(EXTERNAL FUNCTION,INTEGER

COMMUTE,INTEGER OP,INTEGER IERROR)

Appendix D. MPI subroutine bindings 177

Table 26. Bindings for collective communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Op_free int MPI_Op_free(MPI_Op *op);

MPI::Op::Free void MPI::Op::Free();

MPI_OP_FREE MPI_OP_FREE(INTEGER OP,INTEGER IERROR)

MPI_Reduce int MPI_Reduce(void* sendbuf,void* recvbuf,int count,MPI_Datatype

datatype,MPI_Op op,int root,MPI_Comm comm);

MPI::Comm::Reduce void MPI::Comm::Reduce(const void* sendbuf, void* recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op, int root) const;

MPI_REDUCE MPI_REDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER

ROOT,INTEGER COMM,INTEGER IERROR)

MPI_Reduce_scatter int MPI_Reduce_scatter(void* sendbuf,void* recvbuf,int

*recvcounts,MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

MPI::Comm::Reduce_scatter void MPI::Comm::Reduce_scatter(const void* sendbuf, void* recvbuf, int

recvcounts[], const MPI::Datatype& datatype, const MPI::Op& op) const;

MPI_REDUCE_SCATTER MPI_REDUCE_SCATTER(CHOICE SENDBUF,CHOICE

RECVBUF,INTEGER RECVCOUNTS(*),INTEGER

DATATYPE,INTEGER OP,INTEGER COMM,INTEGER IERROR)

MPI_Scan int MPI_Scan(void* sendbuf,void* recvbuf,int count,MPI_Datatype

datatype,MPI_Op op,MPI_Comm comm);

MPI::Intracomm::Scan void MPI::Intracomm::Scan(const void *sendbuf, void *recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op) const;

MPI_SCAN MPI_SCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER OP,INTEGER

COMM,INTEGER IERROR)

MPI_Scatter int MPI_Scatter(void* sendbuf,int sendcount,MPI_Datatype

sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype,int root

MPI_Comm comm);

MPI::Comm::Scatter void MPI::Comm::Scatter(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount, const

MPI::Datatype& recvtype, int root) const;

MPI_SCATTER MPI_SCATTER(CHOICE SENDBUF,INTEGER

SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER

RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,INTEGER

COMM,INTEGER IERROR)

MPI_Scatterv int MPI_Scatterv(void* sendbuf,int *sendcounts,int *displs,MPI_Datatype

sendtype,void* recvbuf,int recvcount,MPI_Datatype recvtype,int

root,MPI_Comm comm);

MPI::Comm::Scatterv void MPI::Comm::Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], const MPI::Datatype& sendtype, void* recvbuf, int

recvcount, const MPI::Datatype& recvtype, int root) const;

MPI_SCATTERV MPI_SCATTERV(CHOICE SENDBUF,INTEGER

SENDCOUNTS(*),INTEGER DISPLS(*),INTEGER

SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER

RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

178 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Bindings for communicators

Table 27 lists the bindings for communicator subroutines.

 Table 27. Bindings for communicators

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Attr_delete int MPI_Attr_delete(MPI_Comm comm,int keyval);

(none) (none)

MPI_ATTR_DELETE MPI_ATTR_DELETE(INTEGER COMM,INTEGER KEYVAL,INTEGER

IERROR)

MPI_Attr_get int MPI_Attr_get(MPI_Comm comm,int keyval,void *attribute_val, int

*flag);

(none) (none)

MPI_ATTR_GET MPI_ATTR_GET(INTEGER COMM,INTEGER KEYVAL,INTEGER

ATTRIBUTE_VAL, LOGICAL FLAG,INTEGER IERROR)

MPI_Attr_put int MPI_Attr_put(MPI_Comm comm,int keyval,void* attribute_val);

(none) (none)

MPI_ATTR_PUT MPI_ATTR_PUT(INTEGER COMM,INTEGER KEYVAL,INTEGER

ATTRIBUTE_VAL, INTEGER IERROR)

(none) (none)

MPI::Comm::Clone MPI::Cartcomm& MPI::Cartcomm::Clone() const;

MPI::Graphcomm& MPI::Graphcomm::Clone() const;

MPI::Intercomm& MPI::Intercomm::Clone() const;

MPI::Intracomm& MPI::Intracomm::Clone() const;

(none) (none)

MPI_Comm_compare int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2,int

*result);

MPI::Comm::Compare int MPI::Comm::Compare(const MPI::Comm& comm1, const

MPI::Comm& comm2);

MPI_COMM_COMPARE MPI_COMM_COMPARE(INTEGER COMM1,INTEGER

COMM2,INTEGER RESULT,INTEGER IERROR)

MPI_Comm_create int MPI_Comm_create(MPI_Comm comm_in, MPI_Group group,

MPI_Comm *comm_out);

MPI::Intercomm::Create

MPI::Intracomm::Create

MPI::Intercomm MPI::Intercomm::Create(const MPI::Group& group)

const;

MPI::Intracomm MPI::Intracomm::Create(const MPI::Group& group)

const;

MPI_COMM_CREATE MPI_COMM_CREATE(INTEGER COMM_IN, INTEGER GROUP,

INTEGER COMM_OUT,INTEGER IERROR)

MPI_Comm_create_errhandler int MPI_Comm_create_errhandler (MPI_Comm_errhandler_fn

*function, MPI_Errhandler *errhandler);

MPI::Comm::Create_errhandler static MPI::Errhandler

MPI::Comm::Create_errhandler(MPI::Comm::Errhandler_fn* function);

Appendix D. MPI subroutine bindings 179

Table 27. Bindings for communicators (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_COMM_CREATE_ERRHANDLER MPI_COMM_CREATE_ERRHANDLER(EXTERNAL FUNCTION,

INTEGER ERRHANDLER, INTEGER IERROR)

MPI_Comm_create_keyval int MPI_Comm_create_keyval (MPI_Comm_copy_attr_function

*comm_copy_attr_fn, MPI_Comm_delete_attr_function

*comm_delete_attr_fn, int *comm_keyval, void *extra_state);

MPI::Comm::Create_keyval int MPI::Comm::Create_keyval(MPI::Comm::Copy_attr_function*

comm_copy_attr_fn, MPI::Comm::Delete_attr_function*

comm_delete_attr_fn, void* extra_state);

MPI_COMM_CREATE_KEYVAL MPI_COMM_CREATE_KEYVAL(EXTERNAL

COMM_COPY_ATTR_FN, EXTERNAL COMM_DELETE_ATTR_FN,

INTEGER COMM_KEYVAL, INTEGER EXTRA_STATE, INTEGER

IERROR)

MPI_Comm_delete_attr int MPI_Comm_delete_attr (MPI_Comm comm, int comm_keyval);

MPI::Comm::Delete_attr void MPI::Comm::Delete_attr(int comm_keyval);

MPI_COMM_DELETE_ATTR MPI_COMM_DELETE_ATTR(INTEGER COMM, INTEGER

COMM_KEYVAL, INTEGER IERROR)

MPI_Comm_dup int MPI_Comm_dup(MPI_Comm comm,MPI_Comm *newcomm);

MPI::Cartcomm::Dup

MPI::Graphcomm::Dup

MPI::Intercomm::Dup

MPI::Intracomm::Dup

MPI::Cartcomm MPI::Cartcomm::Dup() const;

MPI::Graphcomm MPI::Graphcomm::Dup() const;

MPI::Intercomm MPI::Intercomm::Dup() const;

MPI::Intracomm MPI::Intracomm::Dup() const;

MPI_COMM_DUP MPI_COMM_DUP(INTEGER COMM,INTEGER

NEWCOMM,INTEGER IERROR)

MPI_Comm_free int MPI_Comm_free(MPI_Comm *comm);

MPI::Comm::Free void MPI::Comm::Free(void);

MPI_COMM_FREE MPI_COMM_FREE(INTEGER COMM,INTEGER IERROR)

MPI_Comm_free_keyval int MPI_Comm_free_keyval (int *comm_keyval);

MPI::Comm::Free_keyval void MPI::Comm::Free_keyval(int& comm_keyval);

MPI_COMM_FREE_KEYVAL MPI_COMM_FREE_KEYVAL(INTEGER COMM_KEYVAL, INTEGER

IERROR)

MPI_Comm_get_attr int MPI_Comm_get_attr (MPI_Comm comm, int comm_keyval, void

*attribute_val, int *flag);

MPI::Comm::Get_attr bool MPI::Comm::Get_attr(int comm_keyval, void* attribute_val) const;

MPI_COMM_GET_ATTR MPI_COMM_GET_ATTR(INTEGER COMM, INTEGER

COMM_KEYVAL, INTEGER ATTRIBUTE_VAL, LOGICAL FLAG,

INTEGER IERROR)

MPI_Comm_get_errhandler int MPI_Comm_get_errhandler (MPI_Comm comm, MPI_Errhandler

*errhandler);

MPI::Comm::Get_errhandler MPI::Errhandler MPI::Comm::Get_errhandler() const;

MPI_COMM_GET_ERRHANDLER MPI_COMM_GET_ERRHANDLER(INTEGER COMM, INTEGER

ERRHANDLER, INTEGER IERROR)

MPI_Comm_rank int MPI_Comm_rank(MPI_Comm comm,int *rank);

180 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 27. Bindings for communicators (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::Comm::Get_rank int MPI::Comm::Get_rank() const;

MPI_COMM_RANK MPI_COMM_RANK(INTEGER COMM,INTEGER RANK,INTEGER

IERROR)

MPI_Comm_remote_group int MPI_Comm_remote_group(MPI_Comm comm,MPI_group *group);

MPI::Intercomm::Get_remote_group MPI::Group MPI::Intercomm::Get_remote_group() const;

MPI_COMM_REMOTE_GROUP MPI_COMM_REMOTE_GROUP(INTEGER COMM,MPI_GROUP

GROUP,INTEGER IERROR)

MPI_Comm_remote_size int MPI_Comm_remote_size(MPI_Comm comm,int *size);

MPI::Intercomm::Get_remote_size int MPI::Intercomm::Get_remote_size() const;

MPI_COMM_REMOTE_SIZE MPI_COMM_REMOTE_SIZE(INTEGER COMM,INTEGER

SIZE,INTEGER IERROR)

MPI_Comm_set_attr int MPI_Comm_set_attr (MPI_Comm comm, int comm_keyval, void

*attribute_val);

MPI::Comm::Set_attr void MPI::Comm::Set_attr(int comm_keyval, const void* attribute_val)

const;

MPI_COMM_SET_ATTR MPI_COMM_SET_ATTR(INTEGER COMM, INTEGER

COMM_KEYVAL, INTEGER ATTRIBUTE_VAL, INTEGER IERROR)

MPI_Comm_set_errhandler int MPI_Comm_set_errhandler (MPI_Comm comm, MPI_Errhandler

*errhandler);

MPI::Comm::Set_errhandler void MPI::Comm::Set_errhandler(const MPI::Errhandler& errhandler);

MPI_COMM_SET_ERRHANDLER MPI_COMM_SET_ERRHANDLER(INTEGER COMM, INTEGER

ERRHANDLER, INTEGER IERROR)

MPI_Comm_size int MPI_Comm_size(MPI_Comm comm,int *size);

MPI::Comm::Get_size int MPI::Comm::Get_size() const;

MPI_COMM_SIZE MPI_COMM_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER

IERROR)

MPI_Comm_split int MPI_Comm_split(MPI_Comm comm_in, int color, int key,

MPI_Comm *comm_out);

MPI::Intercomm::Split

MPI::Intracomm::Split

MPI::Intercomm MPI::Intercomm::Split(int color, int key) const;

MPI::Intracomm MPI::Intracomm::Split(int color, int key) const;

MPI_COMM_SPLIT MPI_COMM_SPLIT(INTEGER COMM_IN, INTEGER COLOR,

INTEGER KEY, INTEGER COMM_OUT, INTEGER IERROR)

MPI_Comm_test_inter int MPI_Comm_test_inter(MPI_Comm comm,int *flag);

MPI::Comm::Is_inter bool MPI::Comm::Is_inter() const;

MPI_COMM_TEST_INTER MPI_COMM_TEST_INTER(INTEGER COMM,LOGICAL

FLAG,INTEGER IERROR)

MPI_Intercomm_create int MPI_Intercomm_create(MPI_Comm local_comm,int local_leader,

MPI_Comm peer_comm,int remote_leader,int tag,MPI_Comm

*newintercom);

MPI::Intracomm::Create_intercomm MPI::Intercomm MPI::Intracomm::Create_intercomm(int local_leader,

const MPI::Comm& peer_comm, int remote_leader, int tag) const;

Appendix D. MPI subroutine bindings 181

Table 27. Bindings for communicators (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_INTERCOMM_CREATE MPI_INTERCOMM_CREATE(INTEGER LOCAL_COMM,INTEGER

LOCAL_LEADER, INTEGER PEER_COMM,INTEGER

REMOTE_LEADER,INTEGER TAG, INTEGER

NEWINTERCOM,INTEGER IERROR)

MPI_Intercomm_merge int MPI_Intercomm_merge(MPI_Comm intercomm,int high, MPI_Comm

*newintracomm);

MPI::Intercomm::Merge MPI::Intracomm MPI::Intercomm::Merge(bool high);

MPI_INTERCOMM_MERGE MPI_INTERCOMM_MERGE(INTEGER INTERCOMM,INTEGER

HIGH, INTEGER NEWINTRACOMM,INTEGER IERROR)

MPI_Keyval_create int MPI_Keyval_create(MPI_Copy_function *copy_fn,

MPI_Delete_function *delete_fn,int *keyval, void* extra_state);

(none) (none)

MPI_KEYVAL_CREATE MPI_KEYVAL_CREATE(EXTERNAL COPY_FN,EXTERNAL

DELETE_FN, INTEGER KEYVAL,INTEGER EXTRA_STATE,INTEGER

IERROR)

MPI_Keyval_free int MPI_Keyval_free(int *keyval);

(none) (none)

MPI_KEYVAL_FREE MPI_KEYVAL_FREE(INTEGER KEYVAL,INTEGER IERROR)

Bindings for conversion functions

Table 28 lists the C bindings for conversion functions. These functions do not have

C++ or FORTRAN bindings.

 Table 28. Bindings for conversion functions

Function name: C binding:

MPI_Comm_c2f MPI_Fint MPI_Comm_c2f(MPI_Comm comm);

MPI_Comm_f2c MPI_Comm MPI_Comm_f2c(MPI_Fint comm);

MPI_Errhandler_c2f MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler);

MPI_Errhandler_f2c MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errorhandler);

MPI_File_c2f MPI_Fint MPI_File_c2f(MPI_File file);

MPI_File_f2c MPI_File MPI_File_f2c(MPI_Fint file);

MPI_Group_c2f MPI_Fint MPI_Group_c2f(MPI_Group group);

MPI_Group_f2c MPI_Group MPI_Group_f2c(MPI_Fint group);

MPI_Info_c2f MPI_Fint MPI_Info_c2f(MPI_Info info);

MPI_Info_f2c MPI_Info MPI_Info_f2c(MPI_Fint file);

MPI_Op_c2f MPI_Fint MPI_Op_c2f(MPI_Op op);

MPI_Op_f2c MPI_Op MPI_Op_f2c(MPI_Fint op);

MPI_Request_c2f MPI_Fint MPI_Request_c2f(MPI_Request request);

MPI_Request_f2c MPI_Request MPI_Request_f2c(MPI_Fint request);

MPI_Status_c2f int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status);

MPI_Status_f2c int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status);

182 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 28. Bindings for conversion functions (continued)

Function name: C binding:

MPI_Type_c2f MPI_Fint MPI_Type_c2f(MPI_Type datatype);

MPI_Type_f2c MPI_Type MPI_Type_f2c(MPI_Fint datatype);

MPI_Win_c2f MPI_Fint MPI_Win_c2f(MPI_Win win);

MPI_Win_f2c MPI_Win MPI_Win_f2c(MPI_Fint win);

Bindings for derived datatypes

Table 29 lists the bindings for derived datatype subroutines.

 Table 29. Bindings for derived datatypes

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Address int MPI_Address(void* location, MPI_Aint *address);

(none) (none)

MPI_ADDRESS MPI_ADDRESS(CHOICE LOCATION, INTEGER ADDRESS,

INTEGER IERROR)

MPI_Get_address int MPI_Get_address(void *location, MPI_Aint *address);

MPI::Get_address MPI::Aint MPI::Get_address(void* location);

MPI_GET_ADDRESS MPI_GET_ADDRESS(CHOICE LOCATION(*),

INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS, INTEGER

IERROR)

MPI_Get_elements int MPI_Get_elements(MPI_Status *status,MPI_Datatype datatype,int

*count);

MPI::Status::Get_elements int MPI::Status::Get_elements(const MPI::Datatype& datatype) const;

MPI_GET_ELEMENTS MPI_GET_ELEMENTS(INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER DATATYPE,INTEGER

COUNT,INTEGER IERROR)

MPI_Pack int MPI_Pack(void* inbuf,int incount,MPI_Datatype datatype,void

*outbuf, int outsize,int *position,MPI_Comm comm);

MPI::Datatype::Pack void MPI::Datatype::Pack(const void* inbuf, int incount, void* outbuf,

int outsize, int& position, const MPI::Comm& comm) const;

MPI_PACK MPI_PACK(CHOICE INBUF,INTEGER INCOUNT,INTEGER

DATATYPE,CHOICE OUTBUF,INTEGER OUTSIZE,INTEGER

POSITION,INTEGER COMM,INTEGER IERROR)

MPI_Pack_external int MPI_Pack_external(char *datarep, void *inbuf, int incount,

MPI_Datatype datatype, void *outbuf, MPI_Aint outsize, MPI_Aint

*position);

MPI::Datatype::Pack_external void MPI::Datatype::Pack_external(const char* datarep, const void*

inbuf, int incount, void* outbuf, MPI::Aint outsize, MPI_Aint& position)

const;

MPI_PACK_EXTERNAL MPI_PACK_EXTERNAL(CHARACTER*(*) DATAREP, CHOICE

INBUF(*), INTEGER INCOUNT, INTEGER DATATYPE, CHOICE

OUTBUF(*), INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE,

INTEGER(KIND=MPI_ADDRESS_KIND) POSITION, INTEGER

IERROR)

Appendix D. MPI subroutine bindings 183

Table 29. Bindings for derived datatypes (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Pack_external_size int MPI_Pack_external_size(char *datarep, int incount, MPI_Datatype

datatype,MPI_Aint *size);

MPI::Datatype::Pack_external_size MPI::Aint MPI::Datatype::Pack_external_size(const char* datarep, int

incount) const;

MPI_PACK_EXTERNAL_SIZE MPI_PACK_EXTERNAL_SIZE(CHARACTER*(*) DATAREP, INTEGER

INCOUNT, INTEGER DATATYPE,

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, INTEGER IERROR

MPI_Pack_size int MPI_Pack_size(int incount,MPI_Datatype datatype,MPI_Comm

comm,int *size);

MPI::Datatype::Pack_size int MPI::Datatype::Pack_size(int incount, const MPI::Comm& comm)

const;

MPI_PACK_SIZE MPI_PACK_SIZE(INTEGER INCOUNT,INTEGER

DATATYPE,INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

(none) (none)

(none) (none)

MPI_SIZEOF MPI_SIZEOF(CHOICE X, INTEGER SIZE, INTEGER IERROR)

MPI_Type_commit int MPI_Type_commit(MPI_Datatype *datatype);

MPI::Datatype::Commit void MPI::Datatype::Commit();

MPI_TYPE_COMMIT MPI_TYPE_COMMIT(INTEGER DATATYPE,INTEGER IERROR)

MPI_Type_contiguous int MPI_Type_contiguous(int count,MPI_Datatype

oldtype,MPI_Datatype *newtype);

MPI::Datatype::Create_contiguous MPI::Datatype MPI::Datatype::Create_contiguous(int count) const;

MPI_TYPE_CONTIGUOUS MPI_TYPE_CONTIGUOUS(INTEGER COUNT,INTEGER

OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

MPI_Type_create_darray int MPI_Type_create_darray (int size,int rank,int ndims, int

array_of_gsizes[],int array_of_distribs[], int array_of_dargs[],int

array_of_psizes[], int order,MPI_Datatype oldtype,MPI_Datatype

*newtype);

MPI::Datatype::Create_darray MPI::Datatype MPI::Datatype::Create_darray(int size, int rank, int

ndims, const int array_of_gsizes[], const int array_of_distribs[], const int

array_of_dargs[], const int array_of_psizes[], int order) const;

MPI_TYPE_CREATE_DARRAY MPI_TYPE_CREATE_DARRAY (INTEGER SIZE,INTEGER

RANK,INTEGER NDIMS, INTEGER ARRAY_OF_GSIZES(*),INTEGER

ARRAY_OF_DISTRIBS(*), INTEGER

ARRAY_OF_DARGS(*),INTEGER ARRAY_OF_PSIZES(*), INTEGER

ORDER,INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER

IERROR)

MPI_Type_create_f90_complex int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype

*newtype);

MPI::Datatype::Create_f90_complex static MPI::Datatype MPI::Datatype::Create_f90_complex(int p, int r);

MPI_TYPE_CREATE_F90_COMPLEX MPI_TYPE_CREATE_F90_COMPLEX(INTEGER P, INTEGER R,

INTEGER NEWTYPE, INTEGER IERROR)

MPI_Type_create_f90_integer int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype);

MPI::Datatype::Create_f90_integer static MPI::Datatype MPI::Datatype::Create_f90_integer(int r);

184 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 29. Bindings for derived datatypes (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_TYPE_CREATE_F90_INTEGER MPI_TYPE_CREATE_F90_INTEGER(INTEGER R, INTEGER

NEWTYPE, INTEGER IERROR)

MPI_Type_create_f90_real int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype);

MPI::Datatype::Create_f90_real static MPI::Datatype MPI::Datatype::Create_f90_real(int p, int r);

MPI_TYPE_CREATE_F90_REAL MPI_TYPE_CREATE_F90_REAL(INTEGER P, INTEGER R, INTEGER

NEWTYPE, INTEGER IERROR)

MPI_Type_create_hindexed int MPI_Type_create_hindexed(int count, int array_of_blocklengths[],

MPI_Aint array_of_displacements[], MPI_Datatype oldtype,MPI_Datatype

*newtype);

MPI::Datatype::Create_hindexed MPI::Datatype MPI::Datatype::Create_hindexed(int count, const int

array_of_blocklengths[], const MPI::Aint array_of_displacements[]) const;

MPI_TYPE_CREATE_HINDEXED MPI_TYPE_CREATE_HINDEXED(INTEGER COUNT, INTEGER

ARRAY_OF_BLOCKLENGTHS(*),

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF

DISPLACEMENTS(*), INTEGER OLDTYPE, INTEGER NEWTYPE,

INTEGER IERROR)

MPI_Type_create_hvector int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint

stride, MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI::Datatype::Create_hvector MPI::Datatype MPI::Datatype::Create_hvector(int count, int

blocklength, MPI::Aint stride) const;

MPI_TYPE_CREATE_HVECTOR MPI_TYPE_CREATE_HVECTOR(INTEGER COUNT, INTEGER

BLOCKLENGTH, INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE,

INTEGER OLDTYPE, INTEGER NEWTYPE, INTEGER IERROR)

MPI_Type_create_indexed_block int MPI_Type_create_indexed_block(int count, int blocklength, int

array_of_displacements[], MPI_Datatype oldtype, MPI_datatype *newtype);

MPI::Datatype::Create_indexed_block MPI::Datatype MPI::Datatype::Create_indexed_block(int count, int

blocklength, const int array_of_displacements[]) const;

MPI_TYPE_CREATE_INDEXED_BLOCK MPI_TYPE_CREATE_INDEXED_BLOCK(INTEGER COUNT,

INTEGER BLOCKLENGTH, INTEGER ARRAY_OF

DISPLACEMENTS(*), INTEGER OLDTYPE, INTEGER NEWTYPE,

INTEGER IERROR)

MPI_Type_create_keyval int MPI_Type_create_keyval (MPI_Type_copy_attr_function

*type_copy_attr_fn, MPI_Type_delete_attr_function *type_delete_attr_fn,

int *type_keyval, void *extra_state);

MPI::Datatype::Create_keyval int MPI::Datatype::Create_keyval(MPI::Datatype::Copy_attr_function*

type_copy_attr_fn, MPI::Datatype::Delete_attr_function*

type_delete_attr_fn, void* extra_state);

MPI_TYPE_CREATE_KEYVAL MPI_TYPE_CREATE_KEYVAL(EXTERNAL TYPE_COPY_ATTR_FN,

EXTERNAL TYPE_DELETE_ATTR_FN, INTEGER TYPE_KEYVAL,

INTERGER EXTRA_STATE, INTEGER IERROR)

MPI_Type_create_resized int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb,

MPI_Aint extent, MPI_Datatype *newtype);

MPI::Datatype::Create_resized MPI::Datatype MPI::Datatype::Create_resized(const MPI::Aint lb, const

MPI::Aint extent) const;

Appendix D. MPI subroutine bindings 185

Table 29. Bindings for derived datatypes (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_TYPE_CREATE_RESIZED MPI_TYPE_CREATE_RESIZED(INTEGER OLDTYPE, INTEGER LB,

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, INTEGER

NEWTYPE, INTEGER IERROR)

MPI_Type_create_struct int MPI_Type_create_struct(int count, int array_of_blocklengths[],

MPI_Aint array_of_displacements[], MPI_Datatype array_of_types[],

MPI_datatype *newtype);

MPI::Datatype::Create_struct static MPI::Datatype MPI::Datatype::Create_struct(int count, const int

array_of_blocklengths[], const MPI::Aint array_of_displacements[], const

MPI::Datatype array_of_types[]);

MPI_TYPE_CREATE_STRUCT MPI_TYPE_CREATE_STRUCT(INTEGER COUNT, INTEGER

ARRAY_OF_BLOCKLENGTHS(*),

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF

DISPLACEMENTS(*), INTEGER ARRAY_OF_TYPES(*), INTEGER

NEWTYPE, INTEGER IERROR)

MPI_Type_create_subarray int MPI_Type_create_subarray (int ndims,int array_of_sizes[], int

array_of_subsizes[],int array_of_starts[], int order,MPI_Datatype

oldtype,MPI_Datatype *newtype);

MPI::Datatype::Create_subarray MPI::Datatype MPI::Datatype::Create_subarray(int ndims, const int

array_of_sizes[], const int array_of_subsizes[], const int array_of_starts[],

int order) const;

MPI_TYPE_CREATE_SUBARRAY MPI_TYPE_CREATE_SUBARRAY (INTEGER NDIMS,INTEGER

ARRAY_OF_SUBSIZES(*), INTEGER ARRAY_OF_SIZES(*),INTEGER

ARRAY_OF_STARTS(*), INTEGER ORDER,INTEGER

OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

MPI_Type_delete_attr int MPI_Type_delete_attr (MPI_Datatype type, int type_keyval);

MPI::Datatype::Delete_attr void MPI::Datatype::Delete_attr(int type_keyval);

MPI_TYPE_DELETE_ATTR MPI_TYPE_DELETE_ATTR(INTEGER TYPE, INTEGER

TYPE_KEYVAL, INTEGER IERROR)

MPI_Type_dup int MPI_Type_dup (MPI_Datatype type, MPI_Datatype *newtype);

MPI::Datatype::Dup MPI::Datatype MPI::Datatype::Dup() const;

MPI_TYPE_DUP MPI_TYPE_DUP(INTEGER TYPE, INTEGER NEWTYPE, INTEGER

IERROR)

MPI_Type_extent int MPI_Type_extent(MPI_Datatype datatype, int *extent);

(none) (none)

MPI_TYPE_EXTENT MPI_TYPE_EXTENT(INTEGER DATATYPE, INTEGER EXTENT,

INTEGER IERROR)

MPI_Type_free int MPI_Type_free(MPI_Datatype *datatype);

MPI::Datatype::Free void MPI::Datatype::Free();

MPI_TYPE_FREE MPI_TYPE_FREE(INTEGER DATATYPE,INTEGER IERROR)

MPI_Type_free_keyval int MPI_Type_free_keyval (int *type_keyval);

MPI::Datatype::Free_keyval void MPI::Datatype::Free_keyval(int& type_keyval);

MPI_TYPE_FREE_KEYVAL MPI_TYPE_FREE_KEYVAL(INTEGER TYPE_KEYVAL, INTEGER

IERROR)

MPI_Type_get_attr int MPI_Type_get_attr (MPI_Datatype type, int type_keyval, void

*attribute_val, int *flag);

186 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 29. Bindings for derived datatypes (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::Datatype::Get_attr bool MPI::Datatype::Get_attr(int type_keyval, void* attribute_val) const;

MPI_TYPE_GET_ATTR MPI_TYPE_GET_ATTR(INTEGER TYPE, INTEGER TYPE_KEYVAL,

INTEGER ATTRIBUTE_VAL, LOGICAL FLAG, INTEGER IERROR)

MPI_Type_get_contents int MPI_Type_get_contents(MPI_Datatype datatype, int *max_integers,

int *max_addresses, int *max_datatypes, int array_of_integers[], int

array_of_addresses[], int array_of_datatypes[]);

MPI::Datatype::Get_contents void MPI::Datatype::Get_contents(int max_integers, int max_addresses,

int max_datatypes, int array_of_integers[], MPI::Aint array_of_addresses[],

MPI::Datatype array_of_datatypes[]) const;

MPI_TYPE_GET_CONTENTS MPI_TYPE_GET_CONTENTS(INTEGER DATATYPE, INTEGER

MAX_INTEGERS, INTEGER MAX_ADDRESSES, INTEGER

MAX_DATATYPES, INTEGER ARRAY_of_INTEGERS(*), INTEGER

ARRAY_OF_ADDRESSES(*), INTEGER ARRAY_of_DATATYPES(*),

INTEGER IERROR)

MPI_Type_get_envelope int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,

int *num_addresses, int *num_datatypes, int *combiner);

MPI::Datatype::Get_envelope void MPI::Datatype::Get_envelope(int& num_integers, int&

num_addresses, int& num_datatypes, int& combiner) const;

MPI_TYPE_GET_ENVELOPE MPI_TYPE_GET_ENVELOPE(INTEGER DATATYPE, INTEGER

NUM_INTEGERS, INTEGER NUM_ADDRESSES, INTEGER

NUM_DATATYPES, INTEGER COMBINER, INTEGER IERROR)

MPI_Type_get_extent int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,

MPI_Aint *extent);

MPI::Datatype::Get_extent void MPI::Datatype::Get_extent(MPI::Aint& lb, MPI::Aint& extent)

const;

MPI_TYPE_GET_EXTENT MPI_TYPE_GET_EXTENT(INTEGER DATATYPE,

INTEGER(KIND=MPI_ADDRESS_KIND) LB,

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, INTEGER

IERROR)

MPI_Type_get_true_extent int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint

*true_lb, MPI_Aint *true_extent);

MPI::Datatype::Get_true_extent void MPI::Datatype::Get_true_extent(MPI::Aint& true_lb, MPI::Aint&

true_extent) const;

MPI_TYPE_GET_TRUE_EXTENT MPI_TYPE_GET_TRUE_EXTENT(INTEGER DATATYPE, INTEGER

TRUE_LB, INTEGER(KIND=MPI_ADDRESS_KIND) TRUE_EXTENT,

INTEGER IERROR)

MPI_Type_hindexed int MPI_Type_hindexed(int count, int *array_of_blocklengths, MPI_Aint

*array_of_displacements, MPI_Datatype oldtype, MPI_Datatype *newtype);

(none) (none)

MPI_TYPE_HINDEXED MPI_TYPE_HINDEXED(INTEGER COUNT, INTEGER

ARRAY_OF_BLOCKLENGTHS(*), INTEGER ARRAY_OF

DISPLACEMENTS(*), INTEGER OLDTYPE, INTEGER NEWTYPE,

INTEGER IERROR)

MPI_Type_hvector int MPI_Type_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype);

(none) (none)

Appendix D. MPI subroutine bindings 187

Table 29. Bindings for derived datatypes (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_TYPE_HVECTOR MPI_TYPE_HVECTOR(INTEGER COUNT, INTEGER

BLOCKLENGTH, INTEGER STRIDE, INTEGER OLDTYPE, INTEGER

NEWTYPE, INTEGER IERROR)

MPI_Type_indexed int MPI_Type_indexed(int count, int *array_of_blocklengths, int

*array_of_displacements, MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI::Datatype::Create_indexed MPI::Datatype MPI::Datatype::Create_indexed(int count, const int

array_of_blocklengths[], const int array_of_displacements[]) const;

MPI_TYPE_INDEXED MPI_TYPE_INDEXED(INTEGER COUNT, INTEGER

ARRAY_OF_BLOCKLENGTHS(*), INTEGER ARRAY_OF

DISPLACEMENTS(*), INTEGER OLDTYPE, INTEGER NEWTYPE,

INTEGER IERROR)

MPI_Type_lb int MPI_Type_lb(MPI_Datatype datatype, int* displacement);

(none) (none)

MPI_TYPE_LB MPI_TYPE_LB(INTEGER DATATYPE,INTEGER

DISPLACEMENT,INTEGER IERROR)

MPI_Type_match_size int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type);

MPI::Datatype::Match_size static MPI::Datatype MPI::Datatype::Match_size(int typeclass, int size);

MPI_TYPE_MATCH_SIZE MPI_TYPE_MATCH_SIZE(INTEGER TYPECLASS, INTEGER SIZE,

INTEGER TYPE, INTEGER IERROR)

MPI_Type_set_attr int MPI_Type_set_attr (MPI_Datatype type, int type_keyval, void

*attribute_val);

MPI::Datatype::Set_attr void MPI::Datatype::Set_attr(int type_keyval, const void* attribute_val);

MPI_TYPE_SET_ATTR MPI_TYPE_SET_ATTR(INTEGER TYPE, INTEGER TYPE_KEYVAL,

INTEGER ATTRIBUTE_VAL, INTEGER IERROR)

MPI_Type_size int MPI_Type_size(MPI_Datatype datatype,int *size);

MPI::Datatype::Get_size int MPI::Datatype::Get_size() const;

MPI_TYPE_SIZE MPI_TYPE_SIZE(INTEGER DATATYPE, INTEGER SIZE, INTEGER

IERROR)

MPI_Type_struct int MPI_Type_struct(int count, int *array_of_blocklengths, MPI_Aint

*array_of_displacements, MPI_Datatype *array_of_types, MPI_Datatype

*newtype);

(none) (none)

MPI_TYPE_STRUCT MPI_TYPE_STRUCT(INTEGER COUNT, INTEGER

ARRAY_OF_BLOCKLENGTHS(*), INTEGER ARRAY_OF

DISPLACEMENTS(*), INTEGER ARRAY_OF_TYPES(*), INTEGER

NEWTYPE, INTEGER IERROR)

MPI_Type_ub int MPI_Type_ub(MPI_Datatype datatype,int* displacement);

(none) (none)

MPI_TYPE_UB MPI_TYPE_UB(INTEGER DATATYPE,INTEGER

DISPLACEMENT,INTEGER IERROR)

MPI_Type_vector int MPI_Type_vector(int count, int blocklength, int stride, MPI_Datatype

oldtype, MPI_Datatype *newtype);

MPI::Datatype::Create_vector MPI::Datatype MPI::Datatype::Create_vector(int count, int blocklength,

int stride) const;

188 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 29. Bindings for derived datatypes (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_TYPE_VECTOR MPI_TYPE_VECTOR(INTEGER COUNT, INTEGER BLOCKLENGTH,

INTEGER STRIDE, INTEGER OLDTYPE, INTEGER NEWTYPE,

INTEGER IERROR)

MPI_Unpack int MPI_Unpack(void* inbuf,int insize,int *position,void *outbuf,int

outcount,MPI_Datatype datatype,MPI_Comm comm);

MPI::Datatype::Unpack void MPI::Datatype::Unpack(const void* inbuf, int insize, void* outbuf,

int outcount, int& position, const MPI::Comm& comm) const;

MPI_UNPACK MPI_UNPACK(CHOICE INBUF,INTEGER INSIZE,INTEGER

POSITION,CHOICE OUTBUF,INTEGER OUTCOUNT,INTEGER

DATATYPE,INTEGER COMM, INTEGER IERRROR)

MPI_Unpack_external int MPI_Unpack_external(char *datarep, void *inbuf, MPI_Aint insize,

MPI_Aint *position, void *outbuf, int outcount, MPI_Datatype datatype);

MPI::Datatype::Unpack_external void MPI::Datatype::Unpack_external(const char* datarep, const void*

inbuf, MPI::Aint insize, MPI::Aint& position, void* outbuf, int outcount)

const;

MPI_UNPACK_EXTERNAL MPI_UNPACK_EXTERNAL(CHARACTER*(*) DATAREP, CHOICE

INBUF(*), INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE,

INTEGER(KIND=MPI_ADDRESS_KIND) POSITION, CHOICE

OUTBUF(*), INTEGER OUTCOUNT, INTEGER DATATYPE,

INTEGER IERROR)

Bindings for environment management

Table 30 lists the bindings for environment management subroutines.

 Table 30. Bindings for environment management

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Abort int MPI_Abort(MPI_Comm comm, int errorcode);

MPI::Comm::Abort void MPI::Comm::Abort(int errorcode);

MPI_ABORT MPI_ABORT(INTEGER COMM,INTEGER ERRORCODE,INTEGER

IERROR)

MPI_Errhandler_create int MPI_Errhandler_create(MPI_Handler_function *function,

MPI_Errhandler *errhandler);

(none) (none)

MPI_ERRHANDLER_CREATE MPI_ERRHANDLER_CREATE(EXTERNAL FUNCTION,INTEGER

ERRHANDLER, INTEGER IERROR)

MPI_Errhandler_free int MPI_Errhandler_free(MPI_Errhandler *errhandler);

MPI::Errhandler::Free void MPI::Errhandler::Free();

MPI_ERRHANDLER_FREE MPI_ERRHANDLER_FREE(INTEGER ERRHANDLER,INTEGER

IERROR)

MPI_Errhandler_get int MPI_Errhandler_get(MPI_Comm comm,MPI_Errhandler

*errhandler);

Appendix D. MPI subroutine bindings 189

Table 30. Bindings for environment management (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

(none) (none)

MPI_ERRHANDLER_GET MPI_ERRHANDLER_GET(INTEGER COMM,INTEGER

ERRHANDLER,INTEGER IERROR)

MPI_Errhandler_set int MPI_Errhandler_set(MPI_Comm comm,MPI_Errhandler errhandler);

(none) (none)

MPI_ERRHANDLER_SET MPI_ERRHANDLER_SET(INTEGER COMM,INTEGER

ERRHANDLER,INTEGER IERROR)

MPI_Error_class int MPI_Error_class(int errorcode, int *errorclass);

MPI::Get_error_class int MPI::Get_error_class(int errorcode);

MPI_ERROR_CLASS MPI_ERROR_CLASS(INTEGER ERRORCODE,INTEGER

ERRORCLASS,INTEGER IERROR)

MPI_Error_string int MPI_Error_string(int errorcode, char *string, int *resultlen);

MPI::Get_error_string void MPI::Get_error_string(int errorcode, char* string, int& resultlen);

MPI_ERROR_STRING MPI_ERROR_STRING(INTEGER ERRORCODE,CHARACTER

STRING(*),INTEGER RESULTLEN,INTEGER IERROR)

MPI_File_create_errhandler int MPI_File_create_errhandler (MPI_File_errhandler_fn *function,

MPI_Errhandler *errhandler);

MPI::File::Create_errhandler static MPI::Errhandler

MPI::File::Create_errhandler(MPI::File::Errhandler_fn* function);

MPI_FILE_CREATE_ERRHANDLER MPI_FILE_CREATE_ERRHANDLER(EXTERNAL

FUNCTION,INTEGER ERRHANDLER, INTEGER IERROR)

MPI_File_get_errhandler int MPI_File_get_errhandler (MPI_File file,MPI_Errhandler *errhandler);

MPI::File::Get_errhandler MPI::Errhandler MPI::File::Get_errhandler() const;

MPI_FILE_GET_ERRHANDLER MPI_FILE_GET_ERRHANDLER (INTEGER FILE,INTEGER

ERRHANDLER, INTEGER IERROR)

MPI_File_set_errhandler int MPI_File_set_errhandler (MPI_File fh, MPI_Errhandler errhandler);

MPI::File::Set_errhandler void MPI::File::Set_errhandler(const MPI::Errhandler& errhandler);

MPI_FILE_SET_ERRHANDLER MPI_FILE_SET_ERRHANDLER(INTEGER FH,INTEGER

ERRHANLDER, INTEGER IERROR)

MPI_Finalize int MPI_Finalize(void);

MPI::Finalize void MPI::Finalize();

MPI_FINALIZE MPI_FINALIZE(INTEGER IERROR)

MPI_Finalized int MPI_Finalized(int *flag);

MPI::Is_finalized bool MPI::Is_finalized();

MPI_FINALIZED MPI_FINALIZED(LOGICAL FLAG, INTEGER IERROR)

MPI_Get_processor_name int MPI_Get_processor_name(char *name,int *resultlen);

MPI::Get_processor_name void MPI::Get_processor_name(char*& name, int& resultlen);

MPI_GET_PROCESSOR_NAME MPI_GET_PROCESSOR_NAME(CHARACTER NAME(*),INTEGER

RESULTLEN,INTEGER IERROR)

MPI_Get_version int MPI_Get_version(int *version,int *subversion);

MPI::Get_version void MPI::Get_version(int& version, int& subversion);

190 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 30. Bindings for environment management (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_GET_VERSION MPI_GET_VERSION(INTEGER VERSION,INTEGER

SUBVERSION,INTEGER IERROR)

MPI_Init int MPI_Init(int *argc, char ***argv);

MPI::Init void MPI::Init(int& argc, char**& argv);

void MPI::Init();

MPI_INIT MPI_INIT(INTEGER IERROR)

MPI_Init_thread int MPI_Init_thread(int *argc, char *((*argv)[]), int required, int

*provided);

MPI::Init_thread int MPI::Init_thread(int& argc, char**& argv, int required);

int MPI::Init_thread(int required);

MPI_INIT_THREAD MPI_INIT_THREAD(INTEGER REQUIRED, INTEGER PROVIDED,

INTEGER IERROR)

MPI_Initialized int MPI_Initialized(int *flag);

MPI::Is_initialized bool MPI::Is_initialized();

MPI_INITIALIZED MPI_INITIALIZED(INTEGER FLAG,INTEGER IERROR)

MPI_Is_thread_main int MPI_Is_thread_main(int *flag);

MPI::Is_thread_main bool MPI::Is_thread_main();

MPI_IS_THREAD_MAIN MPI_IS_THREAD_MAIN(LOGICAL FLAG, INTEGER IERROR)

MPI_Query_thread int MPI_Query_thread(int *provided);

MPI::Query_thread int MPI::Query_thread();

MPI_QUERY_THREAD MPI_QUERY_THREAD(INTEGER PROVIDED, INTEGER IERROR)

MPI_Wtick double MPI_Wtick(void);

MPI::Wtick double MPI::Wtick();

MPI_WTICK DOUBLE PRECISION MPI_WTICK()

MPI_Wtime double MPI_Wtime(void);

MPI::Wtime double MPI::Wtime();

MPI_WTIME DOUBLE PRECISION MPI_WTIME()

Bindings for external interfaces

Table 31 lists the bindings for external interfaces.

 Table 31. Binding for external interfaces

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Add_error_class int MPI_Add_error_class(int *errorclass);

MPI::Add_error_class int MPI::Add_error_class();

Appendix D. MPI subroutine bindings 191

Table 31. Binding for external interfaces (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_ADD_ERROR_CLASS MPI_ADD_ERROR_CLASS(INTEGER ERRORCLASS, INTEGER

IERROR)

MPI_Add_error_code int MPI_Add_error_code(int errorclass, int *errorcode);

MPI::Add_error_code int MPI::Add_error_code(int errorclass);

MPI_ADD_ERROR_CODE MPI_ADD_ERROR_CODE(INTEGER ERRORCLASS, INTEGER

ERRORCODE, INTEGER IERROR)

MPI_Add_error_string int MPI_Add_error_string(int errorcode, char *string);

MPI::Add_error_string void MPI::Add_error_string(int errorcode, const char* string);

MPI_ADD_ERROR_STRING MPI_ADD_ERROR_STRING(INTEGER ERRORCODE,

CHARACTER*(*) STRING, INTEGER IERROR)

MPI_Comm_call_errhandler int MPI_Comm_call_errhandler (MPI_Comm comm, int errorcode);

MPI::Comm::Call_errhandler void MPI::Comm::Call_errhandler(int errorcode) const;

MPI_COMM_CALL_ERRHANDLER MPI_COMM_CALL_ERRHANDLER(INTEGER COMM, INTEGER

ERRORCODE, INTEGER IERROR)

MPI_Comm_get_name int MPI_Comm_get_name (MPI_Comm comm, char *comm_name, int

*resultlen);

MPI::Comm::Get_name void MPI::Comm::Get_name(char* comm_name, int& resultlen) const;

MPI_COMM_GET_NAME MPI_COMM_GET_NAME(INTEGER COMM, CHARACTER*(*)

COMM_NAME, INTEGER RESULTLEN, INTEGER IERROR)

MPI_Comm_set_name int MPI_Comm_set_name (MPI_Comm comm, char *comm_name);

MPI::Comm::Set_name void MPI::Comm::Set_name(const char* comm_name);

MPI_COMM_SET_NAME MPI_COMM_SET_NAME(INTEGER COMM, CHARACTER*(*)

COMM_NAME, INTEGER IERROR)

MPI_File_call_errhandler int MPI_File_call_errhandler (MPI_File fh, int errorcode);

MPI::File::Call_errhandler void MPI::File::Call_errhandler(int errorcode) const;

MPI_FILE_CALL_ERRHANDLER MPI_FILE_CALL_ERRHANDLER(INTEGER FH, INTEGER

ERRORCODE, INTEGER IERROR)

MPI_Grequest_complete int MPI_Grequest_complete(MPI_Request request);

MPI::Grequest::Complete void MPI::Grequest::Complete();

MPI_GREQUEST_COMPLETE MPI_GREQUEST_COMPLETE(INTEGER REQUEST, INTEGER

IERROR)

MPI_Grequest_start int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,

MPI_Grequest_free_function *free_fn, MPI_Grequest_cancel_function

*cancel_fn, void *extra_state, MPI_Request *request);

MPI::Grequest::Start MPI::Grequest MPI::Grequest::Start(MPI::Grequest::Query_function

query_fn, MPI::Grequest::Free_function free_fn,

MPI::Grequest::Cancel_function cancel_fn, void *extra_state);

MPI_GREQUEST_START MPI_GREQUEST_START(EXTERNAL QUERY_FN, EXTERNAL

FREE_FN, EXTERNAL CANCEL_FN, INTEGER EXTRA_STATE,

INTEGER REQUEST, INTEGER IERROR)

MPI_Status_set_elements int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype

datatype, int count);

192 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 31. Binding for external interfaces (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::Status::Set_elements void MPI::Status::Set_elements(const MPI::Datatype& datatype, int

count);

MPI_STATUS_SET_CANCELLED MPI_STATUS_SET_CANCELLED(INTEGER

STATUS(MPI_STATUS_SIZE), LOGICAL FLAG, INTEGER IERROR)

MPI_Status_set_cancelled int MPI_Status_set_cancelled(MPI_Status *status, int flag);

MPI::Status::Set_cancelled void MPI::Status::Set_cancelled(bool flag);

MPI_STATUS_SET_ELEMENTS MPI_STATUS_SET_ELEMENTS(INTEGER

STATUS(MPI_STATUS_SIZE), INTEGER DATATYPE, INTEGER

COUNT, INTEGER IERROR)

MPI_Type_get_name int MPI_Type_get_name(MPI_Datatype type, char *type_name, int

*resultlen);

MPI::Datatype::Get_name void MPI::Datatype::Get_name(char* type_name, int& resultlen) const;

MPI_TYPE_GET_NAME MPI_TYPE_GET_NAME(INTEGER TYPE, CHARACTER*(*)

TYPE_NAME, INTEGER RESULTLEN, INTEGER IERROR)

MPI_Type_set_name int MPI_Type_set_name (MPI_Datatype type, char *type_name);

MPI::Datatype::Set_name void MPI::Datatype::Set_name(const char* type_name);

MPI_TYPE_SET_NAME MPI_TYPE_SET_NAME(INTEGER TYPE, CHARACTER*(*)

TYPE_NAME, INTEGER IERROR)

MPI_Win_call_errhandler int MPI_Win_call_errhandler (MPI_Win win, int errorcode);

MPI::Win::Call_errhandler void MPI::Win::Call_errhandler(int errorcode) const;

MPI_WIN_CALL_ERRHANDLER MPI_WIN_CALL_ERRHANDLER(INTEGER WIN, INTEGER

ERRORCODE, INTEGER IERROR)

MPI_Win_get_name int MPI_Win_get_name (MPI_Win win, char *win_name, int *resultlen);

MPI::Win::Get_name void MPI::Win::Get_name(char* win_name, int& resultlen) const;

MPI_WIN_GET_NAME MPI_WIN_GET_NAME(INTEGER WIN, CHARACTER*(*)

WIN_NAME, INTEGER RESULTLEN, INTEGER IERROR)

MPI_Win_set_name int MPI_Win_set_name (MPI_Win win, char *win_name);

MPI::Win::Set_name void MPI::Win::Set_name(const char* win_name);

MPI_WIN_SET_NAME MPI_WIN_SET_NAME(INTEGER WIN, CHARACTER*(*)

WIN_NAME, INTEGER IERROR)

Bindings for group management

Table 32 lists the bindings for group management subroutines.

 Table 32. Bindings for groups

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Comm_group int MPI_Comm_group(MPI_Comm comm,MPI_Group *group);

MPI::Comm::Get_group MPI::Group MPI::Comm::Get_group() const;

Appendix D. MPI subroutine bindings 193

Table 32. Bindings for groups (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_COMM_GROUP MPI_COMM_GROUP(INTEGER COMM,INTEGER GROUP,INTEGER

IERROR)

MPI_Group_compare int MPI_Group_compare(MPI_Group group1,MPI_Group group2,int

*result);

MPI::Group::Compare static int MPI::Group::Compare(const MPI::Group& group1, const

MPI::Group& group2);

MPI_GROUP_COMPARE MPI_GROUP_COMPARE(INTEGER GROUP1,INTEGER

GROUP2,INTEGER RESULT,INTEGER IERROR)

MPI_Group_difference int MPI_Group_difference(MPI_Group group1,MPI_Group

group2,MPI_Group *newgroup);

MPI::Group::Difference static MPI::Group MPI::Group::Difference(const MPI::Group& group1,

const MPI::Group& group2);

MPI_GROUP_DIFFERENCE MPI_GROUP_DIFFERENCE(INTEGER GROUP1,INTEGER

GROUP2,INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_excl int MPI_Group_excl(MPI_Group group,int n,int *ranks,MPI_Group

*newgroup);

MPI::Group::Excl MPI::Group MPI::Group::Excl(int n, const int ranks[]) const;

MPI_GROUP_EXCL MPI_GROUP_EXCL(INTEGER GROUP,INTEGER N,INTEGER

RANKS(*),INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_free int MPI_Group_free(MPI_Group *group);

MPI::Group::Free void MPI::Group::Free();

MPI_GROUP_FREE MPI_GROUP_FREE(INTEGER GROUP,INTEGER IERROR)

MPI_Group_incl int MPI_Group_incl(MPI_Group group,int n,int *ranks,MPI_Group

*newgroup);

MPI::Group::Incl MPI::Group MPI::Group::Incl(int n, const int ranks[]) const;

MPI_GROUP_INCL MPI_GROUP_INCL(INTEGER GROUP,INTEGER N,INTEGER

RANKS(*),INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_intersection int MPI_Group_intersection(MPI_Group group1,MPI_Group

group2,MPI_Group *newgroup);

MPI::Group::Intersect static MPI::Group MPI::Group::Intersect(const MPI::Group& group1,

const MPI::Group& group2);

MPI_GROUP_INTERSECTION MPI_GROUP_INTERSECTION(INTEGER GROUP1,INTEGER

GROUP2,INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_range_excl int MPI_Group_range_excl(MPI_Group group,int n,int ranges

[][3],MPI_Group *newgroup);

MPI::Group::Range_excl MPI::Group MPI::Group::Range_excl(int n, const int ranges[][3]) const;

MPI_GROUP_RANGE_EXCL MPI_GROUP_RANGE_EXCL(INTEGER GROUP,INTEGER

N,INTEGER RANGES(3,*),INTEGER NEWGROUP,INTEGER IERROR)

MPI_Group_range_incl int MPI_Group_range_incl(MPI_Group group,int n,int

ranges[][3],MPI_Group *newgroup);

MPI::Group::Range_incl MPI::Group MPI::Group::Range_incl(int n, const int ranges[][3]) const;

MPI_GROUP_RANGE_INCL MPI_GROUP_RANGE_INCL(INTEGER GROUP,INTEGER

N,INTEGER RANGES(3,*),INTEGER NEWGROUP,INTEGER IERROR)

194 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 32. Bindings for groups (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Group_rank int MPI_Group_rank(MPI_Group group,int *rank);

MPI::Group::Get_rank int MPI::Group::Get_rank() const;

MPI_GROUP_RANK MPI_GROUP_RANK(INTEGER GROUP,INTEGER RANK,INTEGER

IERROR)

MPI_Group_size int MPI_Group_size(MPI_Group group,int *size);

MPI::Group::Get_size int MPI::Group::Get_size() const;

MPI_GROUP_SIZE MPI_GROUP_SIZE(INTEGER GROUP,INTEGER SIZE,INTEGER

IERROR)

MPI_Group_translate_ranks int MPI_Group_translate_ranks (MPI_Group group1,int n,int

*ranks1,MPI_Group group2,int *ranks2);

MPI::Group::Translate_ranks void MPI::Group::Translate_ranks(const MPI::Group& group1, int n,

const int ranks1[], const MPI::Group& group2, int ranks2[]);

MPI_GROUP_TRANSLATE_RANKS MPI_GROUP_TRANSLATE_RANKS(INTEGER GROUP1, INTEGER

N,INTEGER RANKS1(*),INTEGER GROUP2,INTEGER

RANKS2(*),INTEGER IERROR)

MPI_Group_union int MPI_Group_union(MPI_Group group1,MPI_Group

group2,MPI_Group *newgroup);

MPI::Group::Union static MPI::Group MPI::Group::Union(const MPI::Group& group1,

const MPI::Group& group2);

MPI_GROUP_UNION MPI_GROUP_UNION(INTEGER GROUP1,INTEGER

GROUP2,INTEGER NEWGROUP,INTEGER IERROR)

Bindings for Info objects

Table 33 lists the bindings for Info objects.

 Table 33. Bindings for Info objects

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Info_create int MPI_Info_create(MPI_Info *info);

MPI::Info::Create static MPI::Info MPI::Info::Create();

MPI_INFO_CREATE MPI_INFO_CREATE(INTEGER INFO,INTEGER IERROR)

MPI_Info_delete int MPI_Info_delete(MPI_Info info,char *key);

MPI::Info::Delete void MPI::Info::Delete(const char* key);

MPI_INFO_DELETE MPI_INFO_DELETE(INTEGER INFO,CHARACTER KEY(*),

INTEGER IERROR)

MPI_Info_dup int MPI_Info_dup(MPI_Info info,MPI_Info *newinfo);

MPI::Info::Dup MPI::Info MPI::Info::Dup() const;

MPI_INFO_DUP MPI_INFO_DUP(INTEGER INFO,INTEGER NEWINFO,INTEGER

IERROR)

MPI_Info_free int MPI_Info_free(MPI_Info *info);

Appendix D. MPI subroutine bindings 195

Table 33. Bindings for Info objects (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::Info::Free void MPI::Info::Free();

MPI_INFO_FREE MPI_INFO_FREE(INTEGER INFO,INTEGER IERROR)

MPI_Info_get int MPI_Info_get(MPI_Info info,char *key,int valuelen, char *value,int

*flag);

MPI::Info::Get bool MPI::Info::Get(const char* key, int valuelen, char* value) const;

MPI_INFO_GET MPI_INFO_GET (INTEGER INFO,CHARACTER KEY(*),INTEGER

VALUELEN, CHARACTER VALUE(*),LOGICAL FLAG,INTEGER

IERROR)

MPI_Info_get_nkeys int MPI_Info_get_nkeys(MPI_Info info,int *nkeys);

MPI::Info::Get_nkeys int MPI::Info::Get_nkeys() const;

MPI_INFO_GET_NKEYS MPI_INFO_GET_NKEYS(INTEGER INFO,INTEGER

NKEYS,INTEGER IERROR)

MPI_Info_get_nthkey int MPI_Info_get_nthkey(MPI_Info info, int n, char *key);

MPI::Info::Get_nthkey void MPI::Info::Get_nthkey(int n, char* key) const;

MPI_INFO_GET_NTHKEY MPI_INFO_GET_NTHKEY(INTEGER INFO,INTEGER

N,CHARACTER KEY(*), INTEGER IERROR)

MPI_Info_get_valuelen int MPI_Info_get_valuelen(MPI_Info info,char *key,int *valuelen, int

*flag);

MPI::Info::Get_valuelen bool MPI::Info::Get_valuelen(const char* key, int& valuelen) const;

MPI_INFO_GET_VALUELEN MPI_INFO_GET_VALUELEN(INTEGER INFO,CHARACTER

KEY(*),INTEGER VALUELEN,LOGICAL FLAG, INTEGER IERROR)

MPI_Info_set int MPI_Info_set(MPI_Info info,char *key,char *value);

MPI::Info::Set void MPI::Info::Set(const char* key, const char* value);

MPI_INFO_SET MPI_INFO_SET(INTEGER INFO,CHARACTER KEY(*),CHARACTER

VALUE(*), INTEGER IERROR)

Bindings for memory allocation

Table 34 lists the bindings for memory allocation subroutines.

 Table 34. Bindings for memory allocation

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Alloc_mem int MPI_Alloc_mem (MPI_Aint size, MPI_Info info, void *baseptr);

MPI::Alloc_mem void* MPI::Alloc_mem(MPI::Aint size, const MPI::Info& info);

MPI_ALLOC_MEM MPI_ALLOC_MEM(INTEGER SIZE, INTEGER INFO, INTEGER

BASEPTR, INTEGER IERROR)

MPI_Free_mem int MPI_Free_mem (void *base);

MPI::Free_mem void MPI::Free_mem(void *base):

MPI_FREE_MEM MPI_FREE_MEM(CHOICE BASE, INTEGER IERROR)

196 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Bindings for MPI-IO

Table 35 lists the bindings for MPI-IO subroutines.

 Table 35. Bindings for MPI-IO

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_File_close int MPI_File_close (MPI_File *fh);

MPI::File::Close void MPI::File::Close();

MPI_FILE_CLOSE MPI_FILE_CLOSE(INTEGER FH,INTEGER IERROR)

MPI_File_delete int MPI_File_delete (char *filename,MPI_Info info);

MPI::File::Delete static void MPI::File::Delete(const char* filename, const MPI::Info& info);

MPI_FILE_DELETE MPI_FILE_DELETE(CHARACTER*(*) FILENAME,INTEGER INFO,

INTEGER IERROR)

MPI_File_get_amode int MPI_File_get_amode (MPI_File fh,int *amode);

MPI::File::Get_amode int MPI::File::Get_amode() const;

MPI_FILE_GET_AMODE MPI_FILE_GET_AMODE(INTEGER FH,INTEGER AMODE,INTEGER

IERROR)

MPI_File_get_atomicity int MPI_File_get_atomicity (MPI_File fh,int *flag);

MPI::File::Get_atomicity bool MPI::File::Get_atomicity() const;

MPI_FILE_GET_ATOMICITY MPI_FILE_GET_ATOMICITY (INTEGER FH,LOGICAL

FLAG,INTEGER IERROR)

MPI_File_get_byte_offset int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset *disp);

MPI::File::Get_byte_offset MPI::Offset MPI::File::Get_byte_offset(const MPI::Offset disp) const;

MPI_FILE_GET_BYTE_OFFSET MPI_FILE_GET_BYTE_OFFSET(INTEGER FH,

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

INTEGER(KIND=MPI_OFFSET_KIND) DISP, INTEGER IERROR)

MPI_File_get_group int MPI_File_get_group (MPI_File fh,MPI_Group *group);

MPI::File::Get_group MPI::Group MPI::File::Get_group() const;

MPI_FILE GET_GROUP MPI_FILE GET_GROUP (INTEGER FH,INTEGER GROUP,INTEGER

IERROR)

MPI_File_get_info int MPI_File_get_info (MPI_File fh,MPI_Info *info_used);

MPI::File::Get_info MPI::Info MPI::File::Get_info() const;

MPI_FILE_GET_INFO MPI_FILE_GET_INFO (INTEGER FH,INTEGER INFO_USED,

INTEGER IERROR)

MPI_File_get_position int MPI_File_get_position(MPI_File fh,MPI_Offset *offset);

MPI::File::Get_position MPI::Offset MPI::File::Get_position() const;

MPI_FILE_GET_POSITION MPI_FILE_GET_POSITION(INTEGER FH,

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, INTEGER IERROR)

MPI_File_get_position_shared int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset);

MPI::File::Get_position_shared MPI::Offset MPI::File::Get_position_shared() const;

MPI_FILE_GET_POSITION_SHARED MPI_FILE_GET_POSITION_SHARED(INTEGER FH,

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, INTEGER IERROR)

MPI_File_get_size int MPI_File_get_size (MPI_File fh,MPI_Offset size);

Appendix D. MPI subroutine bindings 197

Table 35. Bindings for MPI-IO (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::File::Get_size MPI::Offset MPI::File::Get_size() const;

MPI_FILE_GET_SIZE MPI_FILE_GET_SIZE (INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE, INTEGER IERROR)

MPI_File_get_type_extent int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent);

MPI::File::Get_type_extent MPI::Aint MPI::File::Get_type_extent(const MPI::Datatype& datatype)

const;

MPI_FILE_GET_TYPE_EXTENT MPI_FILE_GET_TYPE_EXTENT (INTEGER FH, INTEGER

DATATYPE, INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT,

INTEGER IERROR)

MPI_File_get_view int MPI_File_get_view (MPI_File fh,MPI_Offset *disp, MPI_Datatype

*etype,MPI_Datatype *filetype,char *datarep);

MPI::File::Get_view void MPI::File::Get_view(MPI::Offset& disp,MPI::Datatype& etype,

MPI::Datatype& filetype, char* datarep) const;

MPI_FILE_GET_VIEW MPI_FILE_GET_VIEW (INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP, INTEGER

ETYPE,INTEGER FILETYPE,INTEGER DATAREP,INTEGER IERROR)

MPI_File_iread int MPI_File_iread (MPI_File fh,void *buf, int count, MPI_Datatype

datatype,MPI_Request *request);

MPI::File::Iread MPI::Request MPI::File::Iread(void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_IREAD MPI_FILE_IREAD (INTEGER FH, CHOICE BUF, INTEGER COUNT,

INTEGER DATATYPE, INTEGER REQUEST, INTEGER IERROR)

MPI_File_iread_at int MPI_File_iread_at (MPI_File fh,MPI_Offset offset,void *buf, int

count,MPI_Datatype datatype,MPI_Request *request);

MPI::File::Iread_at MPI::Request MPI::File::Iread_at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype);

MPI_FILE_IREAD_AT MPI_FILE_IREAD_AT (INTEGER FH,INTEGER

(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE BUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER REQUEST, INTEGER

IERROR)

MPI_File_iread_shared int MPI_File_iread_shared (MPI_File fh,void *buf, int count,

MPI_Datatype datatype,MPI_Request *request);

MPI::File::Iread_shared MPI::Request MPI::File::Iread_shared(void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_IREAD_SHARED MPI_FILE_IREAD_SHARED (INTEGER FH, CHOICE BUF, INTEGER

COUNT, INTEGER DATATYPE, INTEGER REQUEST, INTEGER

IERROR)

MPI_File_iwrite int MPI_File_iwrite (MPI_File fh, void *buf, int count, MPI_Datatype

datatype,MPI_Request *request);

MPI::File::Iwrite MPI::Request MPI::File::Iwrite(const void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_IWRITE MPI_FILE_IWRITE(INTEGER FH,CHOICE BUF,INTEGER

COUNT,INTEGER DATATYPE, INTEGER REQUEST,INTEGER

IERROR)

198 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 35. Bindings for MPI-IO (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_File_iwrite_at int MPI_File_iwrite_at (MPI_File fh,MPI_Offset offset,void *buf, int

count,MPI_Datatype datatype,MPI_Request *request);

MPI::File::Iwrite_at MPI::Request MPI::File::Iwrite_at(MPI::Offset offset, const void* buf, int

count, const MPI::Datatype& datatype);

MPI_FILE_IWRITE_AT MPI_FILE_IWRITE_AT(INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE

BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,

INTEGER IERROR)

MPI_File_iwrite_shared int MPI_File_iwrite_shared (MPI_File fh,void *buf, int count,

MPI_Datatype datatype,MPI_Request *request);

MPI::File::Iwrite_shared MPI::Request MPI::File::Iwrite_shared(const void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_IWRITE_SHARED MPI_FILE_IWRITE_SHARED (INTEGER FH, CHOICE BUF,

INTEGER COUNT, INTEGER DATATYPE, INTEGER REQUEST,

INTEGER IERROR)

MPI_File_open int MPI_File_open (MPI_Comm comm,char *filename,int

amode,MPI_info, MPI_File *fh);

MPI::File::Open static MPI::File MPI::File::Open(const MPI::Intracomm& comm, const

char* filename, int amode, const MPI::Info& info);

MPI_FILE_OPEN MPI_FILE_OPEN(INTEGER COMM,CHARACTER

FILENAME(*),INTEGER AMODE, INTEGER INFO,INTEGER

FH,INTEGER IERROR)

MPI_File_preallocate int MPI_File_preallocate (MPI_File fh, MPI_Offset size);

MPI::File::Preallocate void MPI::File::Preallocate(MPI::Offset size);

MPI_FILE_PREALLOCATE MPI_FILE_PREALLOCATE(INTEGER FH, INTEGER SIZE, INTEGER

IERROR)

MPI_File_read int MPI_File_read (MPI_File fh, void *buf, int count, MPI_Datatype

datatype,MPI_Status *status);

MPI::File::Read void MPI::File::Read(void* buf, int count, const MPI::Datatype&

datatype, MPI::Status& status);

MPI_FILE_READ MPI_FILE_READ(INTEGER FH,CHOICE BUF,INTEGER

COUNT,INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_read_all int MPI_File_read_all (MPI_File fh, void *buf, int count, MPI_Datatype

datatype,MPI_Status *status);

MPI::File::Read_all void MPI::File::Read_all(void* buf, int count, const MPI::Datatype&

datatype, MPI::Status& status);

void MPI::File::Read_all(void* buf, int count, const MPI::Datatype&

datatype);

MPI_FILE_READ_ALL MPI_FILE_READ_ALL(INTEGER FH,CHOICE BUF,INTEGER

COUNT, INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_read_all_begin int MPI_File_read_all_begin (MPI_File fh, void *buf, int count,

MPI_Datatype datatype);

Appendix D. MPI subroutine bindings 199

Table 35. Bindings for MPI-IO (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::File::Read_all_begin void MPI::File::Read_all_begin(void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_READ_ALL_BEGIN MPI_FILE_READ_ALL_BEGIN (INTEGER FH, CHOICE BUF,

INTEGER COUNT, INTEGER DATATYPE, INTEGER IERROR)

MPI_File_read_all_end int MPI_File_read_all_end(MPI_File fh,void *buf, MPI_Status *status);

MPI::File::Read_all_end void MPI::File::Read_all_end(void* buf);

void MPI::File::Read_all_end(void* buf, MPI::Status& status);

MPI_FILE_READ_ALL_END MPI_FILE_READ_ALL_END(INTEGER FH,CHOICE BUF, INTEGER

STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_File_read_at int MPI_File_read_at (MPI_File fh,MPI_Offset offset,void *buf, int

count,MPI_Datatype datatype,MPI_Status *status);

MPI::File::Read_at void MPI::File::Read_at(MPI::Offset offset, void* buf, int count, const

MPI::Datatype& datatype);

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count, const

MPI::Datatype& datatype, MPI::Status& status);

MPI_FILE_READ_AT MPI_FILE_READ_AT(INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE

BUF,INTEGER COUNT,INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_read_at_all int MPI_File_read_at_all (MPI_File fh,MPI_Offset offset,void *buf, int

count,MPI_Datatype datatype,MPI_Status *status);

MPI::File::Read_at_all void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count, const

MPI::Datatype& datatype);

void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count, const

MPI::Datatype& datatype, MPI::Status& status);

MPI_FILE_READ_AT_ALL MPI_FILE_READ_AT_ALL(INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE

BUF,INTEGER COUNT,INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_read_at_all_begin int MPI_File_read_at_all_begin(MPI_File fh,MPI_Offset offset, void

*buf, int count,MPI_Datatype datatype);

MPI::File::Read_at_all_begin void MPI::File::Read_at_all_begin(MPI::Offset offset, void* buf, int

count, const MPI::Datatype& datatype);

MPI_FILE_READ_AT_ALL_BEGIN MPI_FILE_READ_AT_ALL_BEGIN(INTEGER FH,

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE

BUF,INTEGER COUNT,INTEGER DATATYPE, INTEGER IERROR)

MPI_File_read_at_all_end int MPI_File_read_at_all_end(MPI_File fh,void *buf, MPI_Status

*status);

MPI::File::Read_at_all_end void MPI::File::Read_at_all_end(void *buf, MPI::Status& status);

void MPI::File::Read_at_all_end(void *buf);

MPI_FILE_READ_AT_ALL_END MPI_FILE_READ_AT_ALL_END(INTEGER FH,CHOICE BUF,

INTEGER STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_File_read_ordered int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype,MPI_Status *status);

200 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 35. Bindings for MPI-IO (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::File::Read_ordered void MPI::File::Read_ordered(void* buf, int count, const

MPI::Datatype& datatype, MPI::Status& status);

MPI_FILE_READ_ORDERED MPI_FILE_READ_ORDERED(INTEGER FH,CHOICE BUF,INTEGER

COUNT, INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_read_ordered_begin int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype);

MPI::File::Read_ordered_begin void MPI::File::Read_ordered_begin(void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_READ_ORDERED_BEGIN MPI_FILE_READ_ORDERED_BEGIN (INTEGER FH, CHOICE BUF,

INTEGER COUNT, INTEGER DATATYPE, INTEGER IERROR)

MPI_File_read_ordered_end int MPI_File_read_ordered_end(MPI_File fh,void *buf, MPI_Status

*status)

MPI::File::Read_ordered_end void MPI::File::Read_ordered_end(void* buf, MPI::Status& status);

void MPI::File::Read_ordered_end(void* buf);

MPI_FILE_READ_ORDERED_END MPI_FILE_READ_ORDERED_END(INTEGER FH,CHOICE BUF,

INTEGER STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_File_read_shared int MPI_File_read_shared (MPI_File fh, void *buf, int count,

MPI_Datatype datatype,MPI_Status *status);

MPI::File::Read_shared void MPI::File::Read_shared(void* buf, int count, const MPI::Datatype&

datatype);

void MPI::File::Read_shared(void* buf, int count, const MPI::Datatype&

datatype, MPI::Status& status);

MPI_FILE_READ_SHARED MPI_FILE_READ_SHARED(INTEGER FH,CHOICE BUF,INTEGER

COUNT, INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_seek int MPI_File_seek (MPI_File fh,MPI_Offset offset, int whence);

MPI::File::Seek void MPI::File::Seek(MPI::Offset offset, int whence);

MPI_FILE_SEEK MPI_FILE_SEEK (INTEGER FH,

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, INTEGER WHENCE,

INTEGER IERROR)

MPI_File_seek_shared int MPI_File_seek_shared(MPI_File fh,MPI_Offset offset, int whence);

MPI::File::Seek_shared void MPI::File::Seek_shared(MPI::Offset offset, int whence);

MPI_FILE_SEEK_SHARED MPI_FILE_SEEK_SHARED(INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, INTEGER

WHENCE, INTEGER IERROR)

MPI_File_set_atomicity int MPI_File_set_atomicity (MPI_File fh,int flag);

MPI::File::Set_atomicity void MPI::File::Set_atomicity(bool flag);

MPI_FILE_SET_ATOMICITY MPI_FILE_SET_ATOMICITY (INTEGER FH,LOGICAL

FLAG,INTEGER IERROR)

MPI_File_set_info int MPI_File_set_info (MPI_File fh,MPI_Info info);

MPI::File::Set_info void MPI::File::Set_info(const MPI::Info& info);

Appendix D. MPI subroutine bindings 201

Table 35. Bindings for MPI-IO (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_FILE_SET_INFO MPI_FILE_SET_INFO(INTEGER FH,INTEGER INFO,INTEGER

IERROR)

MPI_File_set_size int MPI_File_set_size (MPI_File fh,MPI_Offset size);

MPI::File::Set_size void MPI::File::Set_size(MPI::Offset size);

MPI_FILE_SET_SIZE MPI_FILE_SET_SIZE (INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE, INTEGER IERROR)

MPI_File_set_view int MPI_File_set_view (MPI_File fh,MPI_Offset disp, MPI_Datatype

etype,MPI_Datatype filetype, char *datarep,MPI_Info info);

MPI::File::Set_view void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype,

const MPI::Datatype& filetype, const char* datarep, const MPI::Info&

info);

MPI_FILE_SET_VIEW MPI_FILE_SET_VIEW (INTEGER

FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP, INTEGER

ETYPE,INTEGER FILETYPE,CHARACTER DATAREP(*),INTEGER

INFO, INTEGER IERROR)

MPI_File_sync int MPI_File_sync (MPI_File fh);

MPI::File::Sync void MPI::File::Sync();

MPI_FILE_SYNC MPI_FILE_SYNC (INTEGER FH,INTEGER IERROR)

MPI_File_write int MPI_File_write (MPI_File fh, void *buf, int count, MPI_Datatype

datatype,MPI_Status *status);

MPI::File::Write void MPI::File::Write(const void* buf, int count, const MPI::Datatype&

datatype);

void MPI::File::Write(const void* buf, int count, const MPI::Datatype&

datatype, MPI::Status& status);

MPI_FILE_WRITE MPI_FILE_WRITE(INTEGER FH,CHOICE BUF,INTEGER

COUNT,INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_write_all int MPI_File_write_all (MPI_File fh, void *buf, int count, MPI_Datatype

datatype,MPI_Status *status);

MPI::File::Write_all void MPI::File::Write_all(const void* buf, int count, const

MPI::Datatype& datatype);

void MPI::File::Write_all(const void* buf, int count, const

MPI::Datatype& datatype, MPI::Status& status);

MPI_FILE_WRITE_ALL MPI_FILE_WRITE_ALL(INTEGER FH,CHOICE BUF,INTEGER

COUNT, INTEGER DATATYPE,INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_write_all_begin int MPI_File_write_all_begin (MPI_File fh, void *buf, int count,

MPI_Datatype datatype);

MPI::File::Write_all_begin void MPI::File::Write_all_begin(const void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_WRITE_ALL_BEGIN MPI_FILE_WRITE_ALL_BEGIN (INTEGER FH, CHOICE BUF,

INTEGER COUNT, INTEGER DATATYPE, INTEGER IERROR)

MPI_File_write_all_end int MPI_File_write_all_end(MPI_File fh,void *buf, MPI_Status *status);

202 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 35. Bindings for MPI-IO (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::File::Write_all_end void MPI::File::Write_all_end(void* buf);

void MPI::File::Write_all_end(void* buf, MPI::Status& status);

MPI_FILE_WRITE_ALL_END MPI_FILE_WRITE_ALL_END(INTEGER FH,CHOICE BUF, INTEGER

STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_File_write_at int MPI_File_write_at (MPI_File fh,MPI_Offset offset,void *buf, int

count,MPI_Datatype datatype,MPI_Status *status);

MPI::File::Write_at void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype);

void MPI::File::Write_at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status);

MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT(INTEGER

FH,INTEGER(KIND_MPI_OFFSET_KIND) OFFSET, CHOICE

BUF,INTEGER COUNT,INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_File_write_at_all int MPI_File_write_at_all (MPI_File fh,MPI_Offset offset,void *buf, int

count,MPI_Datatype datatype,MPI_Status *status);

MPI::File::Write_at_all void MPI::File::Write_at_all(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype);

void MPI::File::Write_at_all(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status);

MPI_FILE_WRITE_AT_ALL MPI_FILE_WRITE_AT_ALL (INTEGER FH, INTEGER

(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE BUF,INTEGER

COUNT,INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_write_at_all_begin int MPI_File_write_at_all_begin(MPI_File fh,MPI_Offset offset, void

*buf, int count,MPI_Datatype datatype);

MPI::File::Write_at_all_begin void MPI::File::Write_at_all_begin(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype);

MPI_FILE_WRITE_AT_ALL_BEGIN MPI_FILE_WRITE_AT_ALL_BEGIN(INTEGER FH,

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, CHOICE

BUF,INTEGER COUNT,INTEGER DATATYPE, INTEGER IERROR)

MPI_File_write_at_all_end int MPI_File_write_at_all_end(MPI_File fh,void *buf, MPI_Status

*status);

MPI::File::Write_at_all_end void MPI::File::Write_at_all_end(const void* buf);

void MPI::File::Write_at_all_end(const void* buf, MPI::Status& status);

MPI_FILE_WRITE_AT_ALL_END MPI_FILE_WRITE_AT_ALL_END(INTEGER FH,CHOICE BUF,

INTEGER STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_File_write_ordered int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype,MPI_Status *status);

MPI::File::Write_ordered void MPI::File::Write_ordered(const void* buf, int count, const

MPI::Datatype& datatype);

void MPI::File::Write_ordered(const void* buf, int count, const

MPI::Datatype& datatype, MPI::Status& status);

Appendix D. MPI subroutine bindings 203

Table 35. Bindings for MPI-IO (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_FILE_WRITE_ORDERED MPI_FILE_WRITE_ORDERED(INTEGER FH,CHOICE BUF,INTEGER

COUNT, INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_File_write_ordered_begin int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype);

MPI::File::Write_ordered_begin void MPI::File::Write_ordered_begin(const void* buf, int count, const

MPI::Datatype& datatype);

MPI_FILE_WRITE_ORDERED_BEGIN MPI_FILE_WRITE_ORDERED_BEGIN (INTEGER FH, CHOICE BUF,

INTEGER COUNT, INTEGER DATATYPE, INTEGER IERROR)

MPI_File_write_ordered_end int MPI_File_write_ordered_end(MPI_File fh,void *buf, MPI_Status

*status)

MPI::File::Write_ordered_end void MPI::File::Write_ordered_end(const void* buf);

void MPI::File::Write_ordered_end(const void* buf, MPI::Status&

status);

MPI_FILE_WRITE_ORDERED_END MPI_FILE_WRITE_ORDERED_END(INTEGER FH,CHOICE BUF,

INTEGER STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_File_write_shared int MPI_File_write_shared (MPI_File fh, void *buf, int count,

MPI_Datatype datatype,MPI_Status *status);

MPI::File::Write_shared void MPI::File::Write_shared(const void* buf, int count, const

MPI::Datatype& datatype);

void MPI::File::Write_shared(const void* buf, int count, const

MPI::Datatype& datatype, MPI::Status& status);

MPI_FILE_WRITE_SHARED MPI_FILE_WRITE_SHARED(INTEGER FH,CHOICE BUF,INTEGER

COUNT, INTEGER DATATYPE, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Register_datarep int MPI_Register_datarep(char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,

MPI_Datarep_conversion_function *write_conversion_fn,

MPI_Datarep_extent_function *dtype_file_extent_fn, void *extra_state);

MPI::Register_datarep void MPI::Register_datarep(const char* datarep,

MPI::Datarep_conversion_function* read_conversion_fn,

MPI::Datarep_conversion_function* write_conversion_fn,

MPI::Datarep_extent_function* dtype_file_extent_fn, void* extra_state);

MPI_REGISTER_DATAREP MPI_REGISTER_DATAREP(CHARACTER*(*) DATAREP, EXTERNAL

READ_CONVERSION_FN, EXTERNAL WRITE_CONVERSION_FN,

EXTERNAL DTYPE_FILE_EXTENT_FN,

INTEGER(KIND=MPI_ADDRESS_KIND), INTEGER EXTRA_STATE,

INTEGER IERROR)

Bindings for MPI_Status objects

Table 36 on page 205 lists the bindings for MPI_Status object subroutines.

204 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 36. Bindings for MPI_Status objects

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Request_get_status int MPI_Request_get_status(MPI_Request request, int *flag, MPI_Status

*status);

MPI::Request::Get_status bool MPI::Request::Get_status() const;

bool MPI::Request::Get_status(MPI::Status&status) const;

MPI_REQUEST_GET_STATUS MPI_REQUEST_GET_STATUS(INTEGER REQUEST, LOGICAL FLAG,

INTEGER STATUS, INTEGER IERROR)

Bindings for one-sided communication

Table 37 lists the bindings for one-sided communication subroutines.

 Table 37. Bindings for one-sided communication

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Accumulate int MPI_Accumulate (void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win);

MPI::Win::Accumulate void MPI::Win::Accumulate(const void* origin_addr, int origin_count,

const MPI::Datatype& origin_datatype, int target_rank, MPI::Aint

target_disp, int target_count, const MPI::Datatype& target_datatype, const

MPI::Op& op) const;

MPI_ACCUMULATE MPI_ACCUMULATE (CHOICE ORIGIN_ADDR, INTEGER

ORIGIN_COUNT, INTEGER ORIGIN_DATATYPE, INTEGER

TARGET_RANK, INTEGER TARGET_DISP, INTEGER

TARGET_COUNT, INTEGER TARGET_DATATYPE, INTEGER OP,

INTEGER WIN, INTEGER IERROR)

MPI_Get int MPI_Get (void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win);

MPI::Win::Get void MPI::Win::Get(void* origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint target_disp,

int target_count, const MPI::Datatype& target_datatype) const;

MPI_GET MPI_GET(CHOICE ORIGIN_ADDR, INTEGER ORIGIN_COUNT,

INTEGER ORIGIN_DATATYPE, INTEGER TARGET_RANK, INTEGER

TARGET_DISP, INTEGER TARGET_COUNT, INTEGER

TARGET_DATATYPE, INTEGER WIN, INTEGER IERROR)

MPI_Put int MPI_Put (void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win);

MPI::Win::Put void MPI::Win::Put(const void* origin_addr, int origin_count, const

MPI::Datatype& origin_datatype, int target_rank, MPI::Aint target_disp,

int target_count, const MPI::Datatype& target_datatype) const;

Appendix D. MPI subroutine bindings 205

Table 37. Bindings for one-sided communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_PUT MPI_PUT(CHOICE ORIGIN_ADDR, INTEGER ORIGIN_COUNT,

INTEGER ORIGIN_DATATYPE, INTEGER TARGET_RANK, INTEGER

TARGET_DISP, INTEGER TARGET_COUNT, INTEGER

TARGET_DATATYPE, INTEGER WIN, INTEGER IERROR)

MPI_Win_complete int MPI_Win_complete (MPI_Win win);

MPI::Win::Complete void MPI::Win::Complete() const;

MPI_WIN_COMPLETE MPI_WIN_COMPLETE(INTEGER WIN, INTEGER IERROR)

MPI_Win_create int MPI_Win_create (void *base, MPI_Aint size, int disp_unit, MPI_Info

info, MPI_Comm comm, MPI_Win *win); MPI_WIN_CREATE(CHOICE

BASE, INTEGER SIZE, INTEGER DISP_UNIT, INTEGER INFO,

INTEGER COMM, INTEGER WIN, INTEGER IERROR)

MPI::Win::Create static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int

disp_unit, const MPI::Info& info, const MPI::Intracomm& comm);

MPI_WIN_CREATE MPI_WIN_CREATE(CHOICE BASE, INTEGER SIZE, INTEGER

DISP_UNIT, INTEGER INFO, INTEGER COMM, INTEGER WIN,

INTEGER IERROR)

MPI_Win_create_errhandler int MPI_Win_create_errhandler (MPI_Win_errhandler_fn *function,

MPI_Errhandler *errhandler);

MPI::Win::Create_errhandler MPI::Errhandler

MPI::Win::Create_errhandler(MPI::Win::Errhandler_fn* function);

MPI_WIN_CREATE_ERRHANDLER MPI_WIN_CREATE_ERRHANDLER(EXTERNAL FUNCTION,

INTEGER ERRHANDLER, INTEGER IERROR)

MPI_Win_create_keyval int MPI_Win_create_keyval (MPI_Win_copy_attr_function

*win_copy_attr_fn, MPI_Win_delete_attr_function *win_delete_attr_fn, int

*win_keyval, void *extra_state);

MPI::Win::Create_keyval static int MPI::Win::Create_keyval(MPI::Win::Copy_attr_function*

win_copy_attr_fn, MPI::Win::Delete_attr_function* win_delete_attr_fn,

void* extra_state);

MPI_WIN_CREATE_KEYVAL MPI_WIN_CREATE_KEYVAL(EXTERNAL WIN_COPY_ATTR_FN,

EXTERNAL WIN_DELETE_ATTR_FN, INTEGER WIN_KEYVAL,

INTEGER EXTRA_STATE, INTEGER IERROR)

MPI_Win_delete_attr int MPI_Win_delete_attr (MPI_Win win, int win_keyval);

MPI::Win::Delete_attr void MPI::Win::Delete_attr(int win_keyval);

MPI_WIN_DELETE_ATTR MPI_WIN_DELETE_ATTR(INTEGER WIN, INTEGER WIN_KEYVAL,

INTEGER IERROR)

MPI_Win_fence int MPI_Win_fence (int assert, MPI_Win win);

MPI::Win::Fence void MPI::Win::Fence(int assert) const;

MPI_WIN_FENCE MPI_WIN_FENCE(INTEGER ASSERT, INTEGER WIN, INTEGER

IERROR)

MPI_Win_free int MPI_Win_free (MPI_Win *win);

MPI::Win::Free void MPI::Win::Free();

MPI_WIN_FREE MPI_WIN_FREE(INTEGER WIN, INTEGER IERROR)

MPI_Win_free_keyval int MPI_Win_free_keyval (int *win_keyval);

MPI::Win::Free_keyval void MPI::Win::Free_keyval(int& win_keyval);

206 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 37. Bindings for one-sided communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_WIN_FREE_KEYVAL MPI_WIN_FREE_KEYVAL(INTEGER WIN_KEYVAL, INTEGER

IERROR)

MPI_Win_get_attr int MPI_Win_get_attr (MPI_Win win, int win_keyval, void

*attribute_val, int *flag);

MPI::Win::Get_attr bool MPI::Win::Get_attr(int win_keyval, void* attribute_val) const;

MPI_WIN_GET_ATTR MPI_WIN_GET_ATTR(INTEGER WIN, INTEGER WIN_KEYVAL,

INTEGER ATTRIBUTE_VAL, LOGICAL FLAG, INTEGER IERROR)

MPI_Win_get_errhandler int MPI_Win_get_errhandler (MPI_Win win, MPI_Errhandler

*errhandler);

MPI::Win::Get_errhandler MPI::Errhandler MPI::Win::Get_errhandler() const;

MPI_WIN_GET_ERRHANDLER MPI_WIN_GET_ERRHANDLER(INTEGER WIN, INTEGER

ERRHANDLER, INTEGER IERROR)

MPI_Win_get_group int MPI_Win_get_group (MPI_Win *win, MPI_Group *group);

MPI::Win::Get_group MPI::Group MPI::Win::Get_group() const;

MPI_WIN_GET_GROUP MPI_WIN_GET_GROUP(INTEGER WIN, INTEGER GROUP,

INTEGER IERROR)

MPI_Win_lock int MPI_Win_lock (int lock_type, int rank, int assert, MPI_Win win);

MPI::Win::Lock void MPI::Win::Lock(int lock_type, int rank, int assert) const;

MPI_WIN_LOCK MPI_WIN_LOCK(INTEGER LOCK_TYPE, INTEGER RANK,

INTEGER ASSERT, INTEGER WIN, INTEGER IERROR)

MPI_Win_post int MPI_Win_post (MPI_Group group, int assert, MPI_Win win);

MPI::Win::Post void MPI::Win::Post(const MPI::Group& group, int assert) const;

MPI_WIN_POST MPI_WIN_POST(INTEGER GROUP, INTEGER ASSERT, INTEGER

WIN, INTEGER IERROR)

MPI_Win_set_attr int MPI_Win_set_attr (MPI_Win win, int win_keyval, void

*attribute_val);

MPI::Win::Set_attr void MPI::Win::Set_attr(int win_keyval, const void* attribute_val);

MPI_WIN_SET_ATTR MPI_WIN_SET_ATTR(INTEGER WIN, INTEGER WIN_KEYVAL,

INTEGER ATTRIBUTE_VAL, INTEGER IERROR)

MPI_Win_set_errhandler int MPI_Win_set_errhandler (MPI_Win win, MPI_Errhandler

errhandler);

MPI::Win::Set_errhandler void MPI::Win::Set_errhandler(const MPI::Errhandler& errhandler);

MPI_WIN_SET_ERRHANDLER MPI_WIN_SET_ERRHANDLER(INTEGER WIN, INTEGER

ERRHANDLER, INTEGER IERROR)

MPI_Win_start int MPI_Win_start (MPI_Group group, int assert, MPI_Win win);

MPI::Win::Start void MPI::Win::Start(const MPI::Group& group, int assert) const;

MPI_WIN_START MPI_WIN_START(INTEGER GROUP, INTEGER ASSERT, INTEGER

WIN, INTEGER IERROR)

MPI_Win_test int MPI_Win_test (MPI_Win win, int *flag);

MPI::Win::Test() bool MPI::Win::Test() const;

Appendix D. MPI subroutine bindings 207

Table 37. Bindings for one-sided communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_WIN_TEST MPI_WIN_TEST(INTEGER WIN, LOGICAL FLAG, INTEGER

IERROR)

MPI_Win_unlock int MPI_Win_unlock (int rank, MPI_Win win);

MPI::Win::Unlock void MPI::Win::Unlock(int rank) const;

MPI_WIN_UNLOCK MPI_WIN_UNLOCK(INTEGER RANK, INTEGER WIN, INTEGER

IERROR)

MPI_Win_wait int MPI_Win_wait (MPI_Win win);

MPI::Win::Wait void MPI::Win::Wait() const;

MPI_WIN_WAIT MPI_WIN_WAIT(INTEGER WIN, INTEGER IERROR)

Bindings for point-to-point communication

Table 38 lists the bindings for point-to-point communication subroutines.

 Table 38. Bindings for point-to-point communication

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Bsend int MPI_Bsend(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm);

MPI::Comm::Bsend void MPI::Comm::Bsend(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_BSEND MPI_BSEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST, INTEGER TAG,INTEGER

COMM,INTEGER IERROR)

MPI_Bsend_init int MPI_Bsend_init(void* buf,int count,MPI_Datatype datatype,int

dest,int tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Bsend_init MPI::Prequest MPI::Comm::Bsend_init(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_BSEND_INIT MPI_SEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Buffer_attach int MPI_Buffer_attach(void* buffer,int size);

MPI::Attach_buffer void MPI::Attach_buffer(void* buffer, int size);

MPI_BUFFER_ATTACH MPI_BUFFER_ATTACH(CHOICE BUFFER,INTEGER SIZE,INTEGER

IERROR)

MPI_Buffer_detach int MPI_Buffer_detach(void* buffer,int* size);

MPI::Detach_buffer int MPI::Detach_buffer(void*& buffer);

MPI_BUFFER_DETACH MPI_BUFFER_DETACH(CHOICE BUFFER,INTEGER SIZE,INTEGER

IERROR)

MPI_Cancel int MPI_Cancel(MPI_Request *request);

MPI::Request::Cancel void MPI::Request::Cancel(void) const;

208 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 38. Bindings for point-to-point communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_CANCEL MPI_CANCEL(INTEGER REQUEST,INTEGER IERROR)

MPI_Get_count int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int

*count);

MPI::Status::Get_count int MPI::Status::Get_count(const MPI::Datatype& datatype) const;

MPI_GET_COUNT MPI_GET_COUNT(INTEGER

STATUS(MPI_STATUS_SIZE),,INTEGER DATATYPE,INTEGER

COUNT, INTEGER IERROR)

MPI_Ibsend int MPI_Ibsend(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Ibsend MPI::Request MPI::Comm::Ibsend(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_IBSEND MPI_IBSEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Iprobe int MPI_Iprobe(int source,int tag,MPI_Comm comm,int *flag,MPI_Status

*status);

MPI::Comm::Iprobe bool MPI::Comm::Iprobe(int source, int tag) const;

MPI_IPROBE MPI_IPROBE(INTEGER SOURCE,INTEGER TAG,INTEGER

COMM,INTEGER FLAG,INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Irecv int MPI_Irecv(void* buf,int count,MPI_Datatype datatype,int source,int

tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Irecv MPI::Request MPI::Comm::Irecv(void *buf, int count, const

MPI::Datatype& datatype, int source, int tag) const;

MPI_IRECV MPI_IRECV(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER SOURCE,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Irsend int MPI_Irsend(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Irsend MPI::Request MPI::Comm::Irsend(const void *buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_IRSEND MPI_IRSEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Isend int MPI_Isend(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Isend MPI::Request MPI::Comm::Isend(const void *buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_ISEND MPI_ISEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Issend int MPI_Issend(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Issend MPI::Request MPI::Comm::Issend(const void *buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

Appendix D. MPI subroutine bindings 209

Table 38. Bindings for point-to-point communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_ISSEND MPI_ISSEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Probe int MPI_Probe(int source,int tag,MPI_Comm comm,MPI_Status *status);

MPI::Comm::Probe void MPI::Comm::Probe(int source, int tag) const;

void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const;

MPI_PROBE MPI_PROBE(INTEGER SOURCE,INTEGER TAG,INTEGER

COMM,INTEGER STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_Recv int MPI_Recv(void* buf,int count,MPI_Datatype datatype,int source,int

tag, MPI_Comm comm, MPI_Status *status);

MPI::Comm::Recv void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype&

datatype, int source, int tag) const;

void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype&

datatype, int source, int tag, MPI::Status& status) const;

MPI_RECV MPI_RECV(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER SOURCE, INTEGER TAG,INTEGER

COMM,INTEGER STATUS(MPI_STATUS_SIZE),,INTEGER IERROR)

MPI_Recv_init int MPI_Recv_init(void* buf,int count,MPI_Datatype datatype,int

source,int tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Recv_init MPI::Prequest MPI::Comm::Recv_init(void* buf, int count, const

MPI::Datatype& datatype, int source, int tag) const;

MPI_RECV_INIT MPI_RECV_INIT(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER SOURCE,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Request_free int MPI_Request_free(MPI_Request *request);

MPI::Request::Free void MPI::Request::Free();

MPI_REQUEST_FREE MPI_REQUEST_FREE(INTEGER REQUEST,INTEGER IERROR)

MPI_Rsend int MPI_Rsend(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm);

MPI::Comm::Rsend void MPI::Comm::Rsend(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_RSEND MPI_RSEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER IERROR)

MPI_Rsend_init int MPI_Rsend_init(void* buf,int count,MPI_Datatype datatype,int

dest,int tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Rsend_init MPI::Prequest MPI::Comm::Rsend_init(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_RSEND_INIT MPI_RSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Send int MPI_Send(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm);

210 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 38. Bindings for point-to-point communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::Comm::Send void MPI::Comm::Send(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_SEND MPI_SEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER COMM,

INTEGER IERROR)

MPI_Send_init int MPI_Send_init(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Send_init MPI::Prequest MPI::Comm::Send_init(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_SEND_INIT MPI_SEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,INTEGER IERROR)

MPI_Sendrecv int MPI_Sendrecv(void *sendbuf,int sendcount,MPI_Datatype

sendtype,int dest,int sendtag,void *recvbuf,int recvcount, MPI_Datatype

recvtype,int source,int recvtag,MPI_Comm comm,MPI_Status *status);

MPI::Comm::Sendrecv void MPI::Comm::Sendrecv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, int dest, int sendtag, void* recvbuf, int

recvcount, const MPI::Datatype& recvtype, int source, int recvtag) const;

void MPI::Comm::Sendrecv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, int dest, int sendtag, void* recvbuf, int

recvcount, const MPI::Datatype& recvtype, int source, int recvtag,

MPI::Status& status) const;

MPI_SENDRECV MPI_SENDRECV(CHOICE SENDBUF,INTEGER

SENDCOUNT,INTEGER SENDTYPE,INTEGER DEST,INTEGER

SENDTAG,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER

RECVTYPE,INTEGER SOURCE,INTEGER RECVTAG,INTEGER

COMM,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Sendrecv_replace int MPI_Sendrecv_replace(void* buf,int count,MPI_Datatype

datatype,int dest,int sendtag,int source,int recvtag,MPI_Comm

comm,MPI_Status *status);

MPI::Comm::Sendrecv_replace void MPI::Comm::Sendrecv_replace(void* buf, int count, const

MPI::Datatype& datatype, int dest, int sendtag, int source, int recvtag)

const;

void MPI::Comm::Sendrecv_replace(void *buf, int count, const

MPI::Datatype& datatype, int dest, int sendtag, int source, int recvtag,

MPI::Status& status) const;

MPI_SENDRECV_REPLACE MPI_SENDRECV_REPLACE(CHOICE BUF,INTEGER

COUNT,INTEGER DATATYPE,INTEGER DEST,INTEGER

SENDTAG,INTEGER SOURCE,INTEGER RECVTAG,INTEGER

COMM,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Ssend int MPI_Ssend(void* buf,int count,MPI_Datatype datatype,int dest,int

tag,MPI_Comm comm);

MPI::Comm::Ssend void MPI::Comm::Ssend(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_SSEND MPI_SSEND(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER IERROR)

Appendix D. MPI subroutine bindings 211

Table 38. Bindings for point-to-point communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Ssend_init int MPI_Ssend_init(void* buf,int count,MPI_Datatype datatype,int

dest,int tag,MPI_Comm comm,MPI_Request *request);

MPI::Comm::Ssend_init MPI::Prequest MPI::Comm::Ssend_init(const void* buf, int count, const

MPI::Datatype& datatype, int dest, int tag) const;

MPI_SSEND_INIT MPI_SSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER

DATATYPE,INTEGER DEST,INTEGER TAG,INTEGER

COMM,INTEGER REQUEST,IERROR)

MPI_Start int MPI_Start(MPI_Request *request);

MPI::Prequest::Start void MPI::Prequest::Start();

MPI_START MPI_START(INTEGER REQUEST,INTEGER IERROR)

MPI_Startall int MPI_Startall(int count,MPI_Request *array_of_requests);

MPI::Prequest::Startall void MPI::Prequest::Startall(int count, MPI::Prequest

array_of_requests[]);

MPI_STARTALL MPI_STARTALL(INTEGER COUNT,INTEGER

ARRAY_OF_REQUESTS(*),INTEGER IERROR)

MPI_Test int MPI_Test(MPI_Request *request,int *flag,MPI_Status *status);

MPI::Request::Test bool MPI::Request::Test();

MPI_TEST MPI_TEST(INTEGER REQUEST,INTEGER FLAG,INTEGER

STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_Test_cancelled int MPI_Test_cancelled(MPI_Status *status,int *flag);

MPI::Status::Is_cancelled bool MPI::Status::Is_cancelled() const;

MPI_TEST_CANCELLED MPI_TEST_CANCELLED(INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER FLAG,INTEGER IERROR)

MPI_Testall int MPI_Testall(int count,MPI_Request *array_of_requests,int

*flag,MPI_Status *array_of_statuses);

MPI::Request::Testall bool MPI::Request::Testall(int count, MPI::Request req_array[]);

bool MPI::Request::Testall(int count, MPI::Request req_array[],

MPI::Status stat_array[]);

MPI_TESTALL MPI_TESTALL(INTEGER COUNT,INTEGER

ARRAY_OF_REQUESTS(*),INTEGER FLAG, INTEGER

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),INTEGER IERROR)

MPI_Testany int MPI_Testany(int count, MPI_Request *array_of_requests, int *index,

int *flag,MPI_Status *status);

MPI::Request::Testany bool MPI::Request::Testany(int count, MPI::Request array[], int& index);

bool MPI::Request::Testany(int count, MPI::Request array[], int& index,

MPI::Status& status);

MPI_TESTANY MPI_TESTANY(INTEGER COUNT,INTEGER

ARRAY_OF_REQUESTS(*),INTEGER INDEX,INTEGER

FLAG,INTEGER STATUS(MPI_STATUS_SIZE), INTEGER IERROR)

MPI_Testsome int MPI_Testsome(int incount,MPI_Request *array_of_requests,int

*outcount,int *array_of_indices,MPI_Status *array_of_statuses);

212 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 38. Bindings for point-to-point communication (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI::Request::Testsome int MPI::Request::Testsome(int incount, MPI::Request req_array[], int

array_of_indices[]);

int MPI::Request::Testsome(int incount, MPI::Request req_array[], int

array_of_indices[], MPI::Status stat_array[]);

MPI_TESTSOME MPI_TESTSOME(INTEGER INCOUNT,INTEGER

ARRAY_OF_REQUESTS(*),INTEGER OUTCOUNT,INTEGER

ARRAY_OF_INDICES(*),INTEGER

ARRAY_OF_STATUSES(MPI_STATUS_SIZE),*),INTEGER IERROR)

MPI_Wait int MPI_Wait(MPI_Request *request,MPI_Status *status);

MPI::Request::Wait void MPI::Request::Wait();

void MPI::Request::Wait(MPI::Status& status);

MPI_WAIT MPI_WAIT(INTEGER REQUEST,INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Waitall int MPI_Waitall(int count,MPI_Request *array_of_requests,MPI_Status

*array_of_statuses);

MPI::Request::Waitall void MPI::Request::Waitall(int count, MPI::Request req_array[]);

void MPI::Request::Waitall(int count, MPI::Request req_array[],

MPI::Status stat_array[]);

MPI_WAITALL MPI_WAITALL(INTEGER COUNT,INTEGER ARRAY_OF_

REQUESTS(*),INTEGER

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), INTEGER IERROR)

MPI_Waitany int MPI_Waitany(int count,MPI_Request *array_of_requests,int

*index,MPI_Status *status);

MPI::Request::Waitany int MPI::Request::Waitany(int count, MPI::Request array[]);

int MPI::Request::Waitany(int count, MPI::Request array[],

MPI::Status& status);

MPI_WAITANY MPI_WAITANY(INTEGER COUNT,INTEGER

ARRAY_OF_REQUESTS(*),INTEGER INDEX, INTEGER

STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

MPI_Waitsome int MPI_Waitsome(int incount,MPI_Request *array_of_requests,int

*outcount,int *array_of_indices,MPI_Status *array_of_statuses);

MPI::Request::Waitsome int MPI::Request::Waitsome(int incount, MPI::Request req_array[], int

array_of_indices[]);

int MPI::Request::Waitsome(int incount, MPI::Request req_array[], int

array_of_indices[], MPI::Status stat_array[]);

MPI_WAITSOME MPI_WAITSOME(INTEGER INCOUNT,INTEGER

ARRAY_OF_REQUESTS,INTEGER OUTCOUNT,INTEGER

ARRAY_OF_INDICES(*),INTEGER

ARRAY_OF_STATUSES(MPI_STATUS_SIZE),*),INTEGER IERROR)

Binding for profiling control

Table 39 on page 214 lists the binding for profiling control.

Appendix D. MPI subroutine bindings 213

Table 39. Binding for profiling control

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Pcontrol int MPI_Pcontrol(const int level,...);

MPI::Pcontrol void MPI::Pcontrol(const int level, ...);

MPI_PCONTROL MPI_PCONTROL(INTEGER LEVEL,...)

Bindings for topologies

Table 40 lists the bindings for topology subroutines.

 Table 40. Bindings for topologies

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Cart_coords int MPI_Cart_coords(MPI_Comm comm,int rank,int maxdims,int

*coords);

MPI::Cartcomm::Get_coords void MPI::Cartcomm::Get_coords(int rank, int maxdims, int coords[])

const;

MPI_CART_COORDS MPI_CART_COORDS(INTEGER COMM,INTEGER RANK,INTEGER

MAXDIMS,INTEGER COORDS(*),INTEGER IERROR)

MPI_Cart_create int MPI_Cart_create(MPI_Comm comm_old,int ndims,int *dims,int

*periods,int reorder,MPI_Comm *comm_cart);

MPI::Intracomm::Create_cart MPI::Cartcomm MPI::Intracomm::Create_cart(int ndims, const int

dims[], const bool periods[], bool reorder) const;

MPI_CART_CREATE MPI_CART_CREATE(INTEGER COMM_OLD,INTEGER

NDIMS,INTEGER DIMS(*), INTEGER PERIODS(*),INTEGER

REORDER,INTEGER COMM_CART,INTEGER IERROR)

MPI_Cart_get int MPI_Cart_get(MPI_Comm comm,int maxdims,int *dims,int

*periods,int *coords);

MPI::Cartcomm::Get_topo void MPI::Cartcomm::Get_topo(int maxdims, int dims[], bool periods[],

int coords[]) const;

MPI_CART_GET MPI_CART_GET(INTEGER COMM,INTEGER MAXDIMS,INTEGER

DIMS(*),INTEGER PERIODS(*),INTEGER COORDS(*),INTEGER

IERROR)

MPI_Cart_map int MPI_Cart_map(MPI_Comm comm,int ndims,int *dims,int *periods,int

*newrank);

MPI::Cartcomm::Map int MPI::Cartcomm::Map(int ndims, const int dims[], const bool

periods[]) const;

MPI_CART_MAP MPI_CART_MAP(INTEGER COMM,INTEGER NDIMS,INTEGER

DIMS(*),INTEGER PERIODS(*),INTEGER NEWRANK,INTEGER

IERROR)

MPI_Cart_rank int MPI_Cart_rank(MPI_Comm comm,int *coords,int *rank);

MPI::Cartcomm::Get_cart_rank int MPI::Cartcomm::Get_cart_rank(const int coords[]) const;

MPI_CART_RANK MPI_CART_RANK(INTEGER COMM,INTEGER

COORDS(*),INTEGER RANK,INTEGER IERROR)

214 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Table 40. Bindings for topologies (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_Cart_shift int MPI_Cart_shift(MPI_Comm comm,int direction,int disp,int

*rank_source,int *rank_dest);

MPI::Cartcomm::Shift void MPI::Cartcomm::Shift(int direction, int disp, int &rank_source, int

&rank_dest) const;

MPI_CART_SHIFT MPI_CART_SHIFT(INTEGER COMM,INTEGER

DIRECTION,INTEGER DISP, INTEGER RANK_SOURCE,INTEGER

RANK_DEST,INTEGER IERROR)

MPI_Cart_sub int MPI_Cart_sub(MPI_Comm comm,int *remain_dims,MPI_Comm

*newcomm);

MPI::Cartcomm::Sub MPI::Cartcomm MPI::Cartcomm::Sub(const bool remain_dims[]) const;

MPI_CART_SUB MPI_CART_SUB(INTEGER COMM,INTEGER

REMAIN_DIMS,INTEGER NEWCOMM, INTEGER IERROR)

MPI_Cartdim_get int MPI_Cartdim_get(MPI_Comm comm, int *ndims);

MPI::Cartcomm::Get_dim int MPI::Cartcomm::Get_dim() const;

MPI_CARTDIM_GET MPI_CARTDIM_GET(INTEGER COMM,INTEGER NDIMS,INTEGER

IERROR)

MPI_Dims_create int MPI_Dims_create(int nnodes,int ndims,int *dims);

MPI::Compute_dims void MPI::Compute_dims(int nnodes, int ndims, int dims[]);

MPI_DIMS_CREATE MPI_DIMS_CREATE(INTEGER NNODES,INTEGER

NDIMS,INTEGER DIMS(*), INTEGER IERROR)

MPI_Graph_create int MPI_Graph_create(MPI_Comm comm_old,int nnodes,int *index,int

*edges,int reorder,MPI_Comm *comm_graph);

MPI::Intracomm::Create_graph MPI::Graphcomm MPI::Intracomm::Create_graph(int nnodes, const int

index[], const int edges[], bool reorder) const;

MPI_GRAPH_CREATE MPI_GRAPH_CREATE(INTEGER COMM_OLD,INTEGER

NNODES,INTEGER INDEX(*), INTEGER EDGES(*),INTEGER

REORDER,INTEGER COMM_GRAPH,INTEGER IERROR)

MPI_Graph_get int MPI_Graph_get(MPI_Comm comm,int maxindex,int maxedges,int

*index, int *edges);

MPI::Graphcomm::Get_topo void MPI::Graphcomm::Get_topo(int maxindex, int maxedges, int

index[], int edges[]) const;

MPI_GRAPH_GET MPI_GRAPH_GET(INTEGER COMM,INTEGER

MAXINDEX,INTEGER MAXEDGES,INTEGER INDEX(*),INTEGER

EDGES(*),INTEGER IERROR)

MPI_Graph_map int MPI_Graph_map(MPI_Comm comm,int nnodes,int *index,int

*edges,int *newrank);

MPI::Graphcomm::Map int MPI::Graphcomm::Map(int nnodes, const int index[], const int

edges[]) const;

MPI_GRAPH_MAP MPI_GRAPH_MAP(INTEGER COMM,INTEGER NNODES,INTEGER

INDEX(*),INTEGER EDGES(*),INTEGER NEWRANK,INTEGER

IERROR)

MPI_Graph_neighbors int MPI_Graph_neighbors(MPI_Comm comm,int rank,int

maxneighbors,int *neighbors);

MPI::Graphcomm::Get_neighbors void MPI::Graphcomm::Get_neighbors(int rank, int maxneighbors, int

neighbors[]) const;

Appendix D. MPI subroutine bindings 215

Table 40. Bindings for topologies (continued)

Subroutine name:

C

C++

FORTRAN

Binding:

C

C++

FORTRAN

MPI_GRAPH_NEIGHBORS MPI_GRAPH_NEIGHBORS(MPI_COMM COMM,INTEGER

RANK,INTEGER MAXNEIGHBORS,INTEGER

NNEIGHBORS(*),INTEGER IERROR)

MPI_Graph_neighbors_count int MPI_Graph_neighbors_count(MPI_Comm comm,int rank,int

*nneighbors);

MPI::Graphcomm::Get_neighbors_count int MPI::Graphcomm::Get_neighbors_count(int rank) const;

MPI_GRAPH_NEIGHBORS_COUNT MPI_GRAPH_NEIGHBORS_COUNT(INTEGER COMM,INTEGER

RANK,INTEGER NEIGHBORS, INTEGER IERROR)

MPI_Graphdims_get int MPI_Graphdims_get(MPI_Comm comm,int *nnodes,int *nedges);

MPI::Graphcomm::Get_dims void MPI::Graphcomm::Get_dims(int nnodes[], int nedges[]) const;

MPI_GRAPHDIMS_GET MPI_GRAPHDIMS_GET(INTEGER COMM,INTEGER

NNDODES,INTEGER NEDGES, INTEGER IERROR)

MPI_Topo_test int MPI_Topo_test(MPI_Comm comm,int *status);

MPI::Comm::Get_topology int MPI::Comm::Get_topology() const;

MPI_TOPO_TEST MPI_TOPO_TEST(INTEGER COMM,INTEGER STATUS,INTEGER

IERROR)

216 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Appendix E. PE MPI buffer management for eager protocol

The Parallel Environment implementation of MPI uses an eager send protocol for

messages whose size is up to the eager limit. This value can be allowed to default,

or can be specified with the MP_EAGER_LIMIT environment variable or the

-eager_limit command-line flag. In an eager send, the entire message is sent

immediately to its destination and the send buffer is returned to the application.

Since the message is sent without knowing if there is a matching receive waiting,

the message may need to be stored in the early arrival buffer at the destination,

until a matching receive is posted by the application. The MPI standard requires

that an eager send be done only if it can be guaranteed that there is sufficient

buffer space. If a send is posted at some source (sender) when buffer space cannot

be guaranteed, the send must not complete at the source until it is known that

there will be a place for the message at the destination.

PE MPI uses a credit flow control, by which senders track the buffer space that

can be guaranteed at each destination. For each source-destination pair, an eager

send consumes a message credit at the source, and a match at the destination

generates a message credit. The message credits generated at the destination are

returned to the sender to enable additional eager sends. The message credits are

returned piggyback on an application message when possible. If there is no return

traffic, they will accumulate at the destination until their number reaches some

threshold, and then be sent back as a batch to minimize network traffic. When a

sender has no message credits, its sends must proceed using rendezvous protocol

until message credits become available. The fallback to rendezvous protocol may

impact performance. With a reasonable supply of message credits, most

applications will find that the credits return soon enough to enable messages that

are not larger than the eager limit to continue to be sent eagerly.

Assuming a pre-allocated early arrival buffer (whose size cannot increase), the

number of message credits that the early arrival buffer represents is equal to the

early arrival buffer size divided by the eager limit. Since no sender can know how

many other tasks will also send eagerly to a given destination, the message credits

must be divided among sender tasks equally. If every task sends eagerly to a single

destination that is not posting receives, each sender consumes its message credits,

fills its share of the destination early arrival buffer, and reverts to rendezvous

protocol. This prevents an overflow at the destination, which would result in job

failure. To offer a reasonable number of message credits per source-destination pair

at larger task counts, either a very large pre-allocated early arrival buffer, or a very

small eager limit is needed.

It would be unusual for a real application to flood a single destination this way,

and well-written applications try to pre-post their receives. An eager send must

consume a message credit at the send side, but when the message arrives and

matches a waiting receive, it does not consume any of the early arrival buffer

space. The message credit is available to be returned to the sender, but does not

return instantly. When they pre-post and do not flood, real applications seldom use

more than a small percentage of the total early arrival buffer space. However,

because message credits must be managed for the worst case, they may be

depleted at the send side. The send side then reverts to rendezvous protocol, even

though there is plenty of early arrival buffer space available, or there is a matching

receive waiting at the receive side, which would then not need to use the early

arrival buffer.

© Copyright IBM Corp. 1993, 2005 217

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

The advantage of a pre-allocated early arrival buffer is that the Parallel

Environment implementation of MPI is able to allocate and free early arrival space

in the pre-allocated buffer quickly, and because the space is owned by the MPI

library, it is certain to be available if needed. There is nothing an application can

do to make the space that is promised by message credits unavailable in the event

that all message credits are used. A disadvantage is that the space that is

pre-allocated to the early arrival buffer to support adequate message credits is

denied to the application, even if only a small portion of that pre-allocated space is

ever used.

With PE 4.2, MPI users are given new control over buffer pre-allocation and

message credits. MPI users can specify both a pre-allocated and maximum early

arrival buffer size. The pre-allocated early arrival buffer is set aside for efficient

management, and guaranteed availability. If the early arrival buffer requirement

exceeds the pre-allocated space, extra early arrival buffer space comes from the

heap using malloc and free. Message credits are calculated based on the maximum

buffer size, and all of the pre-allocated early arrival buffer is used before using

malloc and free. Since message credits are based on the maximum buffer size, an

application that floods a single destination with unmatched eager messages from

all senders, could require the specified maximum. If other heap usage has made

that space unavailable, a malloc could fail and the job would be terminated.

However, well-designed applications might see better performance from additional

credits, but may not even fill the pre-allocated early arrival buffer, let alone come

near needing the promised maximum. An omitted maximum, or any value at or

below the pre_allocated_size, will cause message credits to be limited so that there

will never be an overflow of the pre-allocated early arrival buffer.

For most applications, the default value for the early arrival buffer should be

satisfactory, and with the default, the message credits are calculated based on the

pre-allocated size. The pre-allocated size can be changed from its default by setting

the MP_BUFFER_MEM environment variable or using the -buffer_mem

command-line flag with a single value. The message credits are calculated based

on the modified pre-allocated size. There will be no use of malloc and free after

initialization (MPI_Init). This is the way earlier versions of the Parallel

Environment implementation of MPI worked, so there is no need to learn new

habits for command-line arguments, or to make changes to existing run scripts and

default shell environments.

For some applications, in particular those that are memory constrained or run at

large task counts, it may be useful to adjust the size of the pre-allocated early

arrival buffer to slightly more than the application’s peak demand, but specify a

higher maximum early arrival buffer size so that enough message credits are

available to ensure few or no fallbacks to rendezvous protocol. For a given run,

you can use the MP_STATISTICS environment variable to see how much early

arrival buffer space is used at peak demand, and how often a send that is small

enough to be an eager send, was processed using rendezvous protocol due to a

message credit shortage.

By decreasing the pre-allocated early arrival buffer size to slightly larger than the

application’s peak demand, you avoid wasting pre-allocated buffer space. By

increasing the maximum buffer size, you provide credits which can reduce or

eliminate fallbacks to rendezvous protocol. The application’s peak demand and

fallback frequency can vary from run to run, and the amount of variation may

depend on the nature of the application. If the application’s peak demand is larger

than the pre-allocated early arrival buffer size, the use of malloc and free may

cause a performance impact. The credit flow control will guarantee that the

218 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

application’s peak demand will never exceed the specified maximum. However, if

you pick a maximum that cannot be satisfied, it is possible for an MPI application

that does aggressive but valid flooding of a single destination to fail in a malloc.

The risk of needing the maximum early arrival buffer size is small in

well-structured applications, so with very large task counts, you may choose to set

an unrealistic maximum to allow a higher eager limit and get enough message

credits to maximize performance. However, be aware that if the application

behaves differently than expected and requires significantly more storage than the

pre-allocated early arrival buffer size, and this storage is not available before

message credit shortages throttle eager sending, unexpected paging or even malloc

failures are possible. (To throttle a car engine is to choke off its air and fuel intake

by lifting your foot from the gas pedal when you want to keep the car from going

faster than you can control).

Appendix E. PE MPI buffer management for eager protocol 219

|
|
|

|
|
|
|
|
|
|
|
|
|

220 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Appendix F. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size.

Accessibility information

Accessibility information for IBM products is available online. Visit the IBM

Accessibility Center at:

http://www.ibm.com/able/

To request accessibility information, click Product accessibility information.

Using assistive technologies

Assistive technology products, such as screen readers, function with user

interfaces. Consult the assistive technology documentation for specific information

when using such products to access interfaces.

© Copyright IBM Corp. 1993, 2005 221

222 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1993, 2005 223

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department LJEB/P905

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

224 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard. The standard is documented in two volumes, Version 1.1,

University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions to

the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee, July 18,

1997. The second volume includes a section identified as MPI 1.2 with clarifications

and limited enhancements to MPI 1.1. It also contains the extensions identified as

MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken together constitute

the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 Enhancements, except the contents of the chapter

titled Process Creation and Management.

If you believe that PE MPI does not comply with the MPI standard for the portions

that are implemented, please contact IBM Service.

Trademarks

The following are trademarks of International Business Machines Corporation in

the United States, other countries, or both:

 AFS

 AIX

 AIX 5L

 AIXwindows®

 DFS

 e (logo)

 IBM

 IBM (logo)

 IBMLink™

 LoadLeveler

 POWER™

 POWER3

 POWER4

 POWER5

 pSeries

 RS/6000

 SP

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Notices 225

|

|

|

|

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

Acknowledgments

The PE Benchmarker product includes software developed by the Apache Software

Foundation, http://www.apache.org.

226 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|

Glossary

A

AFS. Andrew File System.

address. A value, possibly a character or group of

characters that identifies a register, a device, a

particular part of storage, or some other data source or

destination.

AIX. Abbreviation for Advanced Interactive Executive,

IBM’s licensed version of the UNIX operating system.

AIX is particularly suited to support technical

computing applications, including high-function

graphics and floating-point computations.

AIXwindows Environment/6000. A graphical user

interface (GUI) for the IBM RS/6000. It has the

following components:

v A graphical user interface and toolkit based on

OSF/Motif

v Enhanced X-Windows, an enhanced version of the

MIT X Window System

v Graphics Library (GL), a graphical interface library

for the application programmer that is compatible

with Silicon Graphics’ GL interface.

API. Application programming interface.

application. The use to which a data processing

system is put; for example, a payroll application, an

airline reservation application.

argument. A parameter passed between a calling

program and a called program or subprogram.

attribute. A named property of an entity.

Authentication. The process of validating the identity

of a user or server.

Authorization. The process of obtaining permission to

perform specific actions.

B

bandwidth. The difference, expressed in hertz,

between the highest and the lowest frequencies of a

range of frequencies. For example, analog transmission

by recognizable voice telephone requires a bandwidth

of about 3000 hertz (3 kHz). The bandwidth of an

optical link designates the information-carrying

capacity of the link and is related to the maximum bit

rate that a fiber link can support.

blocking operation. An operation that does not

complete until the operation either succeeds or fails.

For example, a blocking receive will not return until a

message is received or until the channel is closed and

no further messages can be received.

breakpoint. A place in a program, specified by a

command or a condition, where the system halts

execution and gives control to the workstation user or

to a specified program.

broadcast operation. A communication operation

where one processor sends (or broadcasts) a message to

all other processors.

buffer. A portion of storage used to hold input or

output data temporarily.

C

C. A general-purpose programming language. It was

formalized by Uniforum in 1983 and the ANSI

standards committee for the C language in 1984.

C++. A general-purpose programming language that

is based on the C language. C++ includes extensions

that support an object-oriented programming

paradigm. Extensions include:

v strong typing

v data abstraction and encapsulation

v polymorphism through function overloading and

templates

v class inheritance.

chaotic relaxation. An iterative relaxation method that

uses a combination of the Gauss-Seidel and

Jacobi-Seidel methods. The array of discrete values is

divided into subregions that can be operated on in

parallel. The subregion boundaries are calculated using

the Jacobi-Seidel method, while the subregion interiors

are calculated using the Gauss-Seidel method. See also

Gauss-Seidel.

client. A function that requests services from a server

and makes them available to the user.

cluster. A group of processors interconnected through

a high-speed network that can be used for

high-performance computing.

Cluster 1600. See IBM Eserver Cluster 1600.

collective communication. A communication

operation that involves more than two processes or

tasks. Broadcasts, reductions, and the MPI_Allreduce

subroutine are all examples of collective

communication operations. All tasks in a communicator

must participate.

© Copyright IBM Corp. 1993, 2005 227

 |
 |
 |

command alias. When using the PE command-line

debugger pdbx, you can create abbreviations for

existing commands using the pdbx alias command.

These abbreviations are known as command aliases.

Communication Subsystem (CSS). A component of

the IBM Parallel System Support Programs for AIX that

provides software support for the high performance

switch. CSS provides two protocols: Internet Protocol

(IP) for LAN-based communication and User Space

protocol as a message passing interface that is

optimized for performance over the switch. See also

Internet Protocol and User Space.

communicator. An MPI object that describes the

communication context and an associated group of

processes.

compile. To translate a source program into an

executable program.

condition. One of a set of specified values that a data

item can assume.

control workstation. A workstation attached to the

IBM RS/6000 SP that serves as a single point of control

allowing the administrator or operator to monitor and

manage the system using IBM Parallel System Support

Programs for AIX.

core dump. A process by which the current state of a

program is preserved in a file. Core dumps are usually

associated with programs that have encountered an

unexpected, system-detected fault, such as a

Segmentation Fault or a severe user error. The current

program state is needed for the programmer to

diagnose and correct the problem.

core file. A file that preserves the state of a program,

usually just before a program is terminated for an

unexpected error. See also core dump.

current context. When using the pdbx debugger,

control of the parallel program and the display of its

data can be limited to a subset of the tasks belonging to

that program. This subset of tasks is called the current

context. You can set the current context to be a single

task, multiple tasks, or all the tasks in the program.

D

data decomposition. A method of breaking up (or

decomposing) a program into smaller parts to exploit

parallelism. One divides the program by dividing the

data (usually arrays) into smaller parts and operating

on each part independently.

data parallelism. Refers to situations where parallel

tasks perform the same computation on different sets of

data.

dbx. A symbolic command-line debugger that is often

provided with UNIX systems. The PE command-line

debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in

which you can manually control the execution of a

program. It also provides the ability to display the

program’ data and operation.

distributed shell (dsh). An IBM Parallel System

Support Programs for AIX command that lets you issue

commands to a group of hosts in parallel. See IBM

Parallel System Support Programs for AIX: Command and

Technical Reference for details.

domain name. The hierarchical identification of a host

system (in a network), consisting of human-readable

labels, separated by decimal points.

DPCL target application. The executable program that

is instrumented by a Dynamic Probe Class Library

(DPCL) analysis tool. It is the process (or processes)

into which the DPCL analysis tool inserts probes. A

target application could be a serial or parallel program.

Furthermore, if the target application is a parallel

program, it could follow either the SPMD or the

MPMD model, and may be designed for either a

message-passing or a shared-memory system.

E

environment variable. (1) A variable that describes the

operating environment of the process. Common

environment variables describe the home directory,

command search path, and the current time zone. (2) A

variable that is included in the current software

environment and is therefore available to any called

program that requests it.

Ethernet. A baseband local area network (LAN) that

allows multiple stations to access the transmission

medium at will without prior coordination, avoids

contention by using carrier sense and deference, and

resolves contention by using collision detection and

delayed retransmission. Ethernet uses carrier sense

multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the

completion of an asynchronous operation such as an

input/output operation, for example.

executable. A program that has been link-edited and

therefore can be run in a processor.

execution. To perform the actions specified by a

program or a portion of a program.

expression. In programming languages, a language

construct for computing a value from one or more

operands.

228 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|
|

 |
 |
 |
 |
 |
 |
 |
 |
 |

F

fairness. A policy in which tasks, threads, or processes

must be allowed eventual access to a resource for

which they are competing. For example, if multiple

threads are simultaneously seeking a lock, no set of

circumstances can cause any thread to wait indefinitely

for access to the lock.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). An

American National Standards Institute (ANSI) standard

for a local area network (LAN) using optical fiber

cables. An FDDI LAN can be up to 100 kilometers (62

miles) long, and can include up to 500 system units.

There can be up to 2 kilometers (1.24 miles) between

system units and concentrators.

file system. In the AIX operating system, the

collection of files and file management structures on a

physical or logical mass storage device, such as a

diskette or minidisk.

fileset. (1) An individually-installable option or

update. Options provide specific functions. Updates

correct an error in, or enhance, a previously installed

program. (2) One or more separately-installable,

logically-grouped units in an installation package. See

also licensed program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern

programming languages, and the most popular

language for scientific and engineering computations.

Its name is a contraction of FORmula TRANslation. The

two most common FORTRAN versions are FORTRAN

77, originally standardized in 1978, and FORTRAN 90.

FORTRAN 77 is a proper subset of FORTRAN 90.

function cycle. A chain of calls in which the first

caller is also the last to be called. A function that calls

itself recursively is not considered a function cycle.

functional decomposition. A method of dividing the

work in a program to exploit parallelism. The program

is divided into independent pieces of functionality,

which are distributed to independent processors. This

method is in contrast to data decomposition, which

distributes the same work over different data to

independent processors.

functional parallelism. Refers to situations where

parallel tasks specialize in particular work.

G

Gauss-Seidel. An iterative relaxation method for

solving Laplace’s equation. It calculates the general

solution by finding particular solutions to a set of

discrete points distributed throughout the area in

question. The values of the individual points are

obtained by averaging the values of nearby points.

Gauss-Seidel differs from Jacobi-Seidel in that, for the

i+1st iteration, Jacobi-Seidel uses only values calculated

in the ith iteration. Gauss-Seidel uses a mixture of

values calculated in the ith and i+1st iterations.

global max. The maximum value across all processors

for a given variable. It is global in the sense that it is

global to the available processors.

global variable. A variable defined in one portion of a

computer program and used in at least one other

portion of the computer program.

gprof. A UNIX command that produces an execution

profile of C, COBOL, FORTRAN, or Pascal programs.

The execution profile is in a textual and tabular format.

It is useful for identifying which routines use the most

CPU time. See the man page on gprof.

graphical user interface (GUI). A type of computer

interface consisting of a visual metaphor of a

real-world scene, often of a desktop. Within that scene

are icons, which represent actual objects, that the user

can access and manipulate with a pointing device.

GUI. Graphical user interface.

H

high performance switch. The high-performance

message-passing network of the IBM RS/6000 SP that

connects all processor nodes.

HIPPI. High performance parallel interface.

hook. A pdbx command that lets you re-establish

control over all tasks in the current context that were

previously unhooked with this command.

home node. The node from which an application

developer compiles and runs his program. The home

node can be any workstation on the LAN.

host. A computer connected to a network that

provides an access method to that network. A host

provides end-user services.

host list file. A file that contains a list of host names,

and possibly other information, that was defined by the

application that reads it.

host name. The name used to uniquely identify any

computer on a network.

hot spot. A memory location or synchronization

resource for which multiple processors compete

excessively. This competition can cause a

disproportionately large performance degradation when

one processor that seeks the resource blocks, preventing

many other processors from having it, thereby forcing

them to become idle.

Glossary 229

I

IBM Eserver Cluster 1600. An IBM Eserver Cluster

1600 is any PSSP or CSM-managed cluster comprised of

POWER microprocessor based systems (including

RS/6000 SMPs, RS/6000 SP nodes, and pSeries SMPs).

IBM Parallel Environment (PE) for AIX. A licensed

program that provides an execution and development

environment for parallel C, C++, and FORTRAN

programs. It also includes tools for debugging,

profiling, and tuning parallel programs.

installation image. A file or collection of files that are

required in order to install a software product on a IBM

RS/6000 workstation or on SP system nodes. These

files are in a form that allows them to be installed or

removed with the AIX installp command. See also

fileset, licensed program, and package.

Internet. The collection of worldwide networks and

gateways that function as a single, cooperative virtual

network.

Internet Protocol (IP). (1) The TCP/IP protocol that

provides packet delivery between the hardware and

user processes. (2) The SP switch library, provided with

the IBM Parallel System Support Programs for AIX,

that follows the IP protocol of TCP/IP.

IP. Internet Protocol.

J

Jacobi-Seidel. See Gauss-Seidel.

K

Kerberos. A publicly available security and

authentication product that works with the IBM

Parallel System Support Programs for AIX software to

authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating

system that controls the resources of the CPU and

allocates them to the users. The kernel is

memory-resident, is said to run in kernel mode (in other

words, at higher execution priority level than user

mode), and is protected from user tampering by the

hardware.

L

Laplace’s equation. A homogeneous partial

differential equation used to describe heat transfer,

electric fields, and many other applications.

latency. The time interval between the instant when

an instruction control unit initiates a call for data

transmission, and the instant when the actual transfer

of data (or receipt of data at the remote end) begins.

Latency is related to the hardware characteristics of the

system and to the different layers of software that are

involved in initiating the task of packing and

transmitting the data.

licensed program. A collection of software packages

sold as a product that customers pay for to license. A

licensed program can consist of packages and file sets a

customer would install. These packages and file sets

bear a copyright and are offered under the terms and

conditions of a licensing agreement. See also fileset and

package.

lightweight corefiles. An alternative to standard AIX

corefiles. Corefiles produced in the Standardized

Lightweight Corefile Format provide simple process stack

traces (listings of function calls that led to the error)

and consume fewer system resources than traditional

corefiles.

LoadLeveler. A job management system that works

with POE to let users run jobs and match processing

needs with system resources, in order to make better

use of the system.

local variable. A variable that is defined and used

only in one specified portion of a computer program.

loop unrolling. A program transformation that makes

multiple copies of the body of a loop, also placing the

copies within the body of the loop. The loop trip count

and index are adjusted appropriately so the new loop

computes the same values as the original. This

transformation makes it possible for a compiler to take

additional advantage of instruction pipelining, data

cache effects, and software pipelining.

 See also optimization.

M

management domain . A set of nodes configured for

manageability by the Clusters Systems Management

(CSM) product. Such a domain has a management

server that is used to administer a number of managed

nodes. Only management servers have knowledge of

the whole domain. Managed nodes only know about

the servers managing them; they know nothing of each

other. Contrast with peer domain.

menu. A list of options displayed to the user by a

data processing system, from which the user can select

an action to be initiated.

message catalog. A file created using the AIX Message

Facility from a message source file that contains

application error and other messages, which can later

be translated into other languages without having to

recompile the application source code.

message passing. Refers to the process by which

parallel tasks explicitly exchange program data.

230 IBM PE for AIX 5L V4 R2: MPI Programming Guide

 |
 |
 |
 |
 |
 |
 |
 |

Message Passing Interface (MPI). A standardized API

for implementing the message-passing model.

MIMD. Multiple instruction stream, multiple data

stream.

Multiple instruction stream, multiple data stream

(MIMD). A parallel programming model in which

different processors perform different instructions on

different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel

programming model in which different, but related,

programs are run on different sets of data.

MPI. Message Passing Interface.

N

network. An interconnected group of nodes, lines, and

terminals. A network provides the ability to transmit

data to and receive data from other systems and users.

Network Information Services. A set of UNIX

network services (for example, a distributed service for

retrieving information about the users, groups, network

addresses, and gateways in a network) that resolve

naming and addressing differences among computers

in a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more

functional units interconnect transmission lines. A

computer location defined in a network. (2) In terms of

the IBM RS/6000 SP, a single location or workstation in

a network. An SP node is a physical entity (a

processor).

node ID. A string of unique characters that identifies

the node on a network.

nonblocking operation. An operation, such as

sending or receiving a message, that returns

immediately whether or not the operation was

completed. For example, a nonblocking receive will not

wait until a message is sent, but a blocking receive will

wait. A nonblocking receive will return a status value

that indicates whether or not a message was received.

O

object code. The result of translating a computer

program to a relocatable, low-level form. Object code

contains machine instructions, but symbol names (such

as array, scalar, and procedure names), are not yet

given a location in memory. Contrast with source code.

optimization. A widely-used (though not strictly

accurate) term for program performance improvement,

especially for performance improvement done by a

compiler or other program translation software. An

optimizing compiler is one that performs extensive

code transformations in order to obtain an executable

that runs faster but gives the same answer as the

original. Such code transformations, however, can make

code debugging and performance analysis very difficult

because complex code transformations obscure the

correspondence between compiled and original source

code.

option flag. Arguments or any other additional

information that a user specifies with a program name.

Also referred to as parameters or command-line options.

P

package. A number of file sets that have been

collected into a single installable image of licensed

programs. Multiple file sets can be bundled together for

installing groups of software together. See also fileset

and licensed program.

parallelism. The degree to which parts of a program

may be concurrently executed.

parallelize. To convert a serial program for parallel

execution.

parallel operating environment (POE). An execution

environment that smooths the differences between

serial and parallel execution. It lets you submit and

manage parallel jobs. It is abbreviated and commonly

known as POE.

parameter. (1) In FORTRAN, a symbol that is given a

constant value for a specified application. (2) An item

in a menu for which the operator specifies a value or

for which the system provides a value when the menu

is interpreted. (3) A name in a procedure that is used to

refer to an argument that is passed to the procedure. (4)

A particular piece of information that a system or

application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) In

terms of the IBM RS/6000 SP, a logical collection of

nodes to be viewed as one system or domain. System

partitioning is a method of organizing the SP system

into groups of nodes for testing or running different

levels of software of product environments.

Partition Manager. The component of the parallel

operating environment (POE) that allocates nodes, sets

up the execution environment for remote tasks, and

manages distribution or collection of standard input

(STDIN), standard output (STDOUT), and standard

error (STDERR).

pdbx. The parallel, symbolic command-line debugging

facility of PE. pdbx is based on the dbx debugger and

has a similar interface.

Glossary 231

PE. The IBM Parallel Environment for AIX licensed

program.

peer domain. A set of nodes configured for high

availability by the RSCT configuration manager. Such a

domain has no distinguished or master node. All nodes

are aware of all other nodes, and administrative

commands can be issued from any node in the domain.

All nodes also have a consistent view of the domain

membership. Contrast with management domain.

performance monitor. A utility that displays how

effectively a system is being used by programs.

PID. Process identifier.

POE. parallel operating environment.

pool. Groups of nodes on an SP system that are

known to LoadLeveler, and are identified by a pool

name or number.

point-to-point communication. A communication

operation that involves exactly two processes or tasks.

One process initiates the communication through a send

operation. The partner process issues a receive operation

to accept the data being sent.

procedure. (1) In a programming language, a block,

with or without formal parameters, whose execution is

invoked by means of a procedure call. (2) A set of

related control statements that cause one or more

programs to be performed.

process. A program or command that is actually

running the computer. It consists of a loaded version of

the executable file, its data, its stack, and its kernel data

structures that represent the process’s state within a

multitasking environment. The executable file contains

the machine instructions (and any calls to shared

objects) that will be executed by the hardware. A

process can contain multiple threads of execution.

 The process is created with a fork() system call and

ends using an exit() system call. Between fork and exit,

the process is known to the system by a unique process

identifier (PID).

 Each process has its own virtual memory space and

cannot access another process’s memory directly.

Communication methods across processes include

pipes, sockets, shared memory, and message passing.

prof. A utility that produces an execution profile of an

application or program. It is useful to identify which

routines use the most CPU time. See the man page for

prof.

profiling. The act of determining how much CPU

time is used by each function or subroutine in a

program. The histogram or table produced is called the

execution profile.

Program Marker Array. An X-Windows run time

monitor tool provided with parallel operating

environment, used to provide immediate visual

feedback on a program’s execution.

pthread. A thread that conforms to the POSIX Threads

Programming Model.

R

reduced instruction-set computer. A computer that

uses a small, simplified set of frequently-used

instructions for rapid execution.

reduction operation. An operation, usually

mathematical, that reduces a collection of data by one

or more dimensions. For example, the arithmetic SUM

operation is a reduction operation that reduces an array

to a scalar value. Other reduction operations include

MAXVAL and MINVAL.

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX. RSCT is

the infrastructure used by a variety of IBM products to

provide clusters with improved system availability,

scalability, and ease of use.

remote host. Any host on a network except the one

where a particular operator is working.

remote shell (rsh). A command supplied with both

AIX and the IBM Parallel System Support Programs for

AIX that lets you issue commands on a remote host.

RISC. See reduced instruction-set computer.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

S

shell script. A sequence of commands that are to be

executed by a shell interpreter such as the Bourne shell

(sh), the C shell (csh), or the Korn shell (ksh). Script

commands are stored in a file in the same format as if

they were typed at a terminal.

segmentation fault. A system-detected error, usually

caused by referencing an non-valid memory address.

server. A functional unit that provides shared services

to workstations over a network — a file server, a print

server, or a mail server, for example.

signal handling. A type of communication that is

used by message passing libraries. Signal handling

involves using AIX signals as an asynchronous way to

move data in and out of message buffers.

232 IBM PE for AIX 5L V4 R2: MPI Programming Guide

|
|
|
|
|
|
|

Single program, multiple data (SPMD). A parallel

programming model in which different processors

execute the same program on different sets of data.

source code. The input to a compiler or assembler,

written in a source language. Contrast with object code.

source line. A line of source code.

SP. IBM RS/6000 SP; a scalable system arranged in

various physical configurations, that provides a

high-powered computing environment.

SPMD. Single program, multiple data.

standard input (STDIN). In the AIX operating system,

the primary source of data entered into a command.

Standard input comes from the keyboard unless

redirection or piping is used, in which case standard

input can be from a file or the output from another

command.

standard output (STDOUT). In the AIX operating

system, the primary destination of data produced by a

command. Standard output goes to the display unless

redirection or piping is used, in which case standard

output can go to a file or to another command.

STDIN. Standard input.

STDOUT. Standard output.

stencil. A pattern of memory references used for

averaging. A 4-point stencil in two dimensions for a

given array cell, x(i,j), uses the four adjacent cells,

x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose

execution is invoked by a call. (2) A sequenced set of

instructions or statements that can be used in one or

more computer programs and at one or more points in

a computer program. (3) A group of instructions that

can be part of another routine or can be called by

another program or routine.

synchronization. The action of forcing certain points

in the execution sequences of two or more

asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer

installation who designs, controls, and manages the use

of the computer system. (2) The person who is

responsible for setting up, modifying, and maintaining

the Parallel Environment.

System Data Repository. A component of the IBM

Parallel System Support Programs for AIX software that

provides configuration management for the SP system.

It manages the storage and retrieval of system data

across the control workstation, file servers, and nodes.

T

target application. See DPCL target application.

task. A unit of computation analogous to an AIX

process.

thread. A single, separately dispatchable, unit of

execution. There can be one or more threads in a

process, and each thread is executed by the operating

system concurrently.

tracing. In PE, the collection of information about the

execution of the program. This information is

accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program that,

when reached during execution, cause the debugger to

print information about the state of the program.

trace record. In PE, a collection of information about a

specific event that occurred during the execution of

your program. For example, a trace record is created

for each send and receive operation that occurs in your

program (this is optional and might not be

appropriate). These records are then accumulated into a

trace file that can later be examined.

U

unrolling loops. See loop unrolling.

user. (1) A person who requires the services of a

computing system. (2) Any person or any thing that

can issue or receive commands and message to or from

the information processing system.

User Space. A version of the message passing library

that is optimized for direct access to the high

performance switch, that maximizes the performance

capabilities of the SP hardware.

utility program. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the

processes of a computer; for example, an input routine.

V

variable. (1) In programming languages, a named

object that may take different values, one at a time. The

values of a variable are usually restricted to one data

type. (2) A quantity that can assume any of a given set

of values. (3) A name used to represent a data item

whose value can be changed while the program is

running. (4) A name used to represent data whose

value can be changed, while the program is running,

by referring to the name of the variable.

Glossary 233

 |
 |
 |
 |

view. (1) To display and look at data on screen. (2) A

special display of data, created as needed. A view

temporarily ties two or more files together so that the

combined files can be displayed, printed, or queried.

The user specifies the fields to be included. The

original files are not permanently linked or altered;

however, if the system allows editing, the data in the

original files will be changed.

X

X Window System. The UNIX industry’s graphics

windowing standard that provides simultaneous views

of several executing programs or processes on high

resolution graphics displays.

234 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Index

Special characters
-bmaxdata 34

-buffer_mem command-line flag 77, 81, 218

-clock_source command-line flag 77

-css_interrupt command-line flag 77

-eager_limit command-line flag 217

-hints_filtered command-line flag 78

-hostfile command-line flag 17

-infolevel command-line flag 39

-io_buffer_size command-line flag 81

-io_errlog command-line flag 81

-ionodefile command-line flag 78

-msg_api command-line flag 72

-polling_interval command-line flag 78

-printenv command-line flag 84

-procs command-line flag 16

-q64 42

-qarch compiler option 33

-qextcheck compiler option 34

-qintsize 42

-retransmit_interval command-line flag 79

-shared_memory command-line flag 2, 15, 80

-single_thread command-line flag 80

-stdoutmode command-line flag 31

-thread_stacksize command-line flag 80

-udp_packet_size command-line flag 81

-wait_mode command-line flag 81

@bulkxfer 9

Numerics
32-bit addressing 34

32-bit application 25, 33, 35, 37, 42

32-bit executable 15, 16

64-bit application 25, 33, 37, 42

64-bit executable 15

A
abbreviated names x

accessibility 221

acknowledgments 226

acronyms for product names x

address segments 34

AIX function limitation 30

AIX kernel thread 25

AIX message catalog 33

AIX profiling 11

AIX signals 28

AIXTHREAD_SCOPE environment variable 38

APIs
parallel task identification 145

archive 13

assorted constants 60

asynchronous signals 28, 29

atomic lock 41

B
bindings

subroutine 151, 175

blocking collective 16, 30

blocking communication 1

blocking MPI call 41, 43

blocking receive 4, 6

blocking send 3, 6, 8

buffering messages 217

bulk transfer mode 9

C
C bindings 11

C language binding datatypes 49

C reduction function dattypes 50

checkpoint
hang 41

CHECKPOINT environment variable 39, 41

checkpoint restrictions 39

child process 41

choice arguments 34

clock source 34

collective communication 15

collective communication call 38, 41

collective constants 60

collective operations 62

combiner constants 60

command-line flags
-buffer_mem 77, 218

-clock_source 77

-css_interrupt 77

-eager_limit 78, 217

-hints_filtered 78

-hostfile 17

-infolevel 39

-io_buffer_size 81

-io_errlog 81

-ionodefile 78

-msg_api 72

-polling_interval 78

-printenv 84

-procs 16

-retransmit_interval 79

-rexmit_buf_cnt 81

-rexmit_buf_size 81

-shared_memory 2, 15, 80

-single_thread 80

-stdoutmode 31

-thread_stacksize 80

-udp_packet_size 81

-wait_mode 81

command-line flags, POE 69

commands
poe 25, 32

communication stack 45

communications adapter 9

communicator 66

constants
assorted 60

© Copyright IBM Corp. 1993, 2005 235

constants (continued)
collective 60

collective operations 62

communicator and group comparisons 59

datatype decoding 60

derived datatypes 61

elementary datatype 61

empty group 62

environment inquiry keys 58

error classes 57

error handling specifiers 60

file operation 59

FORTRAN 90 datatype matching 63

maximum sizes 58

MPI 57

MPI-IO 59

null handles 62

one-sided 60

optional datatypes 62

predefined attribute keys 59

reduction function 61

special datatypes 61

threads 63

topologies 59

construction of derived datatypes 61

contention for processors 6

conventions x

core file generation 69

credit flow control 5, 217, 218

D
datatype constructors 24

datatype decoding functions 60

datatypes
C language binding 49

C reduction functions 50

FORTRAN language bindings 50

FORTRAN reduction functions 51

predefined MPI 49

special purpose 49

datatypes for reduction functions (C and C++) 61

datatypes for reduction functions (FORTRAN) 61

deadlock 19

debugger restrictions 39

DEVELOP mode 30

diagnostic information 69

disability 221

dropped packets 10

dynamic probe class library 39

E
eager limit 3, 5, 8, 65, 66, 217

eager protocol 3, 5

eager send 3, 5, 8, 66, 217, 218

early arrival buffer 4, 5, 65, 217, 218

early arrival list 4, 6

elementary datatypes (C and C++) 61

elementary datatypes (FORTRAN) 61

empty group 62

environment inquiry keys 58

environment variables 1

AIXTHREAD_SCOPE 38

CHECKPOINT 39, 41

LAPI_USE_SHM 34

environment variables (continued)
MP_ 33

MP_ACK_INTERVAL 44

MP_ACK_THRESH 9, 45, 76

MP_BUFFER_MEM 4, 5, 65, 66, 77, 218

MP_CC_SCRATCH_BUFFER 9

MP_CLOCK_SOURCE 34, 77

MP_CSS_INTERRUPT 6, 21, 43, 44, 77

MP_EAGER_LIMIT 3, 5, 65, 66, 78, 217

MP_EUIDEVELOP 30, 149, 151

MP_EUIDEVICE 8

MP_EUILIB 2, 3

MP_HINTS_FILTERED 23, 78

MP_HOLD_STDIN 32

MP_HOSTFILE 16

MP_INFOLEVEL 33, 39

MP_INSTANCES 8

MP_INTRDELAY 44

MP_IO_BUFFER_SIZE 24, 81

MP_IO_ERRLOG 23, 81

MP_IONODEFILE 20, 78

MP_LAPI_INET_ADDR 17

MP_MSG_API 43, 72

MP_PIPE_SIZE 44

MP_POLLING_INTERVAL 7, 43, 78

MP_PRINTENV 84

MP_PRIORITY 10

MP_PROCS 16, 65

MP_RETRANSMIT_INTERVAL 10, 79

MP_REXMIT_BUF_CNT 7, 81

MP_REXMIT_BUF_SIZE 7, 81

MP_SHARED_MEMORY 1, 2, 15, 30, 34, 80, 149, 151

MP_SINGLE_THREAD 7, 20, 21, 36, 38, 80

MP_SNDBUF 31

MP_STATISTICS 9, 10, 218

MP_STDOUTMODE 31

MP_SYNC_ON_CONNECT 44

MP_TASK_AFFINITY 10

MP_THREAD_STACKSIZE 37, 80

MP_TIMEOUT 81

MP_UDP_PACKET_SIZE 2, 45, 81

MP_USE_BULK_XFER 9, 45

MP_UTE 85

MP_WAIT_MODE 6, 81

MPI_WAIT_MODE 43

not recognized by PE 33

OBJECT_MODE 42

reserved 33

environment variables, POE 69

error classes 57

error handler 47

error handling specifiers 60

Ethernet adapter 16

exit status
abnormal 29

continuing job step 27

normal 29

parallel application 26

terminating job step 27

values 26, 29, 37

export file 13

extended heap
specifying 35

236 IBM PE for AIX 5L V4 R2: MPI Programming Guide

F
file descriptor numbers 29

file handle 66

file operation constants 59

flags, command-line
-buffer_mem 77, 218

-clock_source 77

-css_interrupt 77

-eager_limit 78, 217

-hints_filtered 78

-hostfile 17

-infolevel 39

-io_buffer_size 81

-io_errlog 81

-ionodefile 78

-msg_api 72

-polling_interval 78

-printenv 84

-procs 16

-retransmit_interval 79

-rexmit_buf_cnt 81

-rexmit_buf_size 81

-shared_memory 2, 15, 80

-single_thread 80

-stdoutmode 31

-thread_stacksize 80

-udp_packet_size 81

-wait_mode 81

FORTRAN 77 175

FORTRAN 90 175

FORTRAN 90 datatype matching constants 63

FORTRAN bindings 11, 12

FORTRAN language binding datatypes 50

FORTRAN reduction function dattypes 51

function overloading 34

functions
MPI 155

G
General Parallel File System (GPFS) 20

gprof 11

H
hidden threads 21

High Performance FORTRAN (HPF) 175

hint filtering 23

I
I/O agent 20

I/O node file 20

IBM General Parallel File System (GPFS) 20

IBM POWER4 server 10

IBM POWER5 server 10

import file 13

Info objects 23

ipcrm 16

J
job control 27

Job Specifications 69

job step progression 27

job step termination 27

default 27

K
key collision 16

key, value pair 23

ksh93 30

L
language bindings

MPI 33

LAPI 1, 17, 43, 44

sliding window protocol 4

used with MPI 43

LAPI data transfer function 3

LAPI dispatcher 4, 6, 9, 10

LAPI parallel program 45

LAPI protocol 25

LAPI send side copy 7

LAPI user message 7

LAPI_INIT 45

LAPI_TERM 45

LAPI_USE_SHM environment variable 34

limits, system
on size of MPI elements 65

llcancel 16

LoadLeveler 9, 26, 67

LookAt message retrieval tool xi

M
M:N threads 38

malloc and free 218

MALLOCDEBUG 35

MALLOCTYPE 35

maximum sizes 58

maximum tasks per node 67

message address range 16

message buffer 16, 25

message credit 5, 65, 217, 218

message descriptor 4

message envelope 6

message envelope buffer 65

message packet transfer 7

message passing
profiling 11

message queue 42

message retrieval tool, LookAt xi

message traffic 9

message transport mechanisms 1

messages
buffering 217

miscellaneous environment variables and flags 69

mixed parallelism with MPI and threads 43

MP_ACK_INTERVAL environment variable 44

MP_ACK_THRESH environment variable 9, 45, 76

MP_BUFFER_MEM environment variable 4, 5, 65, 66, 77, 81,

218

MP_CC_SCRATCH_BUFFER environment variable 9

MP_CLOCK_SOURCE environment variable 34, 77

MP_CSS_INTERRUPT environment variable 6, 21, 43, 44, 77

MP_EAGER_LIMIT environment variable 3, 5, 65, 66, 217

MP_EUIDEVELOP environment variable 30, 149, 151

MP_EUIDEVICE environment variable 8

Index 237

MP_EUILIB environment variable 2, 3

MP_HINTS_FILTERED environment variable 23, 78

MP_HOLD_STDIN environment variable 32

MP_HOSTFILE environment variable 16

MP_INFOLEVEL environment variable 33, 39

MP_INSTANCES environment variable 8

mp_intrdelay 44

MP_INTRDELAY environment variable 44

MP_IO_BUFFER_SIZE environment variable 24, 81

MP_IO_ERRLOG environment variable 23, 81

MP_IONODEFILE environment variable 20, 78

MP_LAPI_INET_ADDR environment variable 17

MP_MSG_API environment variable 43, 72

MP_PIPE_SIZE environment variable 44

MP_POLLING_INTERVAL environment variable 7, 43, 78

MP_PRINTENV environment variable 84

MP_PRIORITY environment variable 10

MP_PROCS environment variable 16, 65

MP_RETRANSMIT_INTERVAL environment variable 10, 79

MP_REXMIT_BUF_CNT environment variable 7

MP_REXMIT_BUF_SIZE environment variable 7

MP_SHARED_MEMORY environment variable 1, 2, 15, 30,

34, 80, 149, 151

MP_SINGLE_THREAD environment variable 7, 20, 21, 36,

38, 80

MP_SNDBUF environment variable 31

MP_STATISTICS environment variable 9, 10, 218

MP_STDOUTMODE environment variable 31

MP_SYNC_ON_CONNECT environment variable 44

MP_TASK_AFFINITY environment variable 10

MP_THREAD_STACKSIZE environment variable 37, 80

MP_TIMEOUT environment variable 81

MP_UDP_PACKET_SIZE environment variable 2, 45, 81

MP_USE_BULK_XFER environment variable 9, 45

MP_UTE environment variable 85

MP_WAIT_MODE environment variable 6, 81

MPCI 44

MPE subroutine bindings 151

MPE subroutines 149

MPI 69

functions 155

subroutines 155

used with LAPI 43

MPI application exit without setting exit value 27

MPI applications
performance 1

MPI constants 57, 58, 59, 60, 61, 62, 63

MPI datatype 19, 49

MPI eager limit 66

MPI envelope 7

MPI internal locking 7

MPI IP performance 2

MPI library 37

architecture considerations 33

MPI Library
performance 1

MPI message size 7

MPI reduction operations 53

MPI size limits 65

MPI subroutine bindings 175

MPI wait call 1, 3, 4, 6

MPI_Abort 26, 28

MPI_ABORT 26, 28

MPI_File 19

MPI_File object 22

MPI_Finalize 27

MPI_FINALIZE 27, 38, 45

MPI_INIT 38, 45

MPI_INIT_THREAD 38

MPI_THREAD_FUNNELED 38

MPI_THREAD_MULTIPLE 38

MPI_THREAD_SINGLE 38

MPI_WAIT_MODE environment variable 43

MPI_WTIME_IS_GLOBAL 34

MPI-IO
API user tasks 20

considerations 20

data buffer size 24

datatype constructors 24

deadlock prevention 19

definition 19

error handling 22

features 19

file interoperability 24

file management 21

file open 21

file tasks 21

hidden threads 21

I/O agent 20

Info objects 23

logging errors 23

portability 19

robustness 19

versatility 19

MPI-IO constants 59

MPL 25

not supported 25

mpxlf_r 13

multi-chip module (MCM) 10

mutex lock 43

N
n-task parallel job 25

named pipes 32

non-blocking collective 16, 30

non-blocking collective communication subroutines 149

non-blocking communication 1

non-blocking receive 4

non-blocking send 3

null handles 62

O
OBJECT_MODE environment variable 42

OK to send response 6

one-sided constants 60

one-sided message passing API 1, 7, 23, 36, 38, 43, 45, 46,

155, 205

op operation
datatypes 54

operations
predefined 53

reduction 53

optional datatypes 62

P
packet sliding window 9

packet statistics 10

parallel application 45

parallel I/O 19

parallel job 25

238 IBM PE for AIX 5L V4 R2: MPI Programming Guide

parallel job termination 29

parallel task I/O 69

parallel task identification API
subroutines 145

parallel utility subroutines 87

MP_BANDWIDTH 91

MP_DISABLEINTR 96

MP_ENABLEINTR 99

MP_FLUSH 102

MP_INIT_CKPT 104

MP_QUERYINTR 106

MP_QUERYINTRDELAY 109

MP_SET_CKPT_CALLBACKS 110

MP_SETINTRDELAY 113

MP_STATISTICS_WRITE 114

MP_STATISTICS_ZERO 117

MP_STDOUT_MODE 118

MP_STDOUTMODE_QUERY 121

MP_UNSET_CKPT_CALLBACKS 123

mpc_bandwidth 91

mpc_disableintr 96

mpc_enableintr 99

mpc_flush 102

mpc_init_ckpt 104

mpc_isatty 89

mpc_queryintr 106

mpc_queryintrdelay 109

mpc_set_ckpt_callbacks 110

mpc_setintrdelay 113

mpc_statistics_write 114

mpc_statistics_zero 117

mpc_stdout_mode 118

mpc_stdoutmode_query 121

mpc_unset_ckpt_callbacks 123

pe_dbg_breakpoint 125

pe_dbg_checkpnt 131

pe_dbg_checkpnt_wait 135

pe_dbg_getcrid 137

pe_dbg_getrtid 138

pe_dbg_getvtid 139

pe_dbg_read_cr_errfile 140

pe_dbg_restart 141

Partition Manager 69

Partition Manager Daemon (PMD) 16, 25, 29, 30, 31, 32

PCI adapter 67

PE 3.2 44

PE 4.1 44

PE co-scheduler 10

performance
shared memory 16

pipes 39, 41

STDIN, STDOUT, or STDERR 32

STDIN, STDOUT, or STDERR, output 32

pmd 32

POE
argument limits 31

program argument 31

shell script 30

user applications 25

poe command 25, 32

POE command-line flags 69

-ack_thresh 76

-adapter_use 70

-buffer_mem 77, 218

-bulk_min_msg_size 80

-clock_source 77

-cmdfile 73

POE command-line flags (continued)
-coredir 83

-corefile_format 83

-corefile_format_sigterm 83

-cpu_use 70

-css_interrupt 77

-debug_notimeout 76

-eager_limit 78, 217

-euidevelop 69, 84

-euidevice 70

-euilib 70

-euilibpath 70

-hfile 71

-hints_filtered 78

-hostfile 17, 71

-ilevel 69, 76

-infolevel 39, 69, 76

-instances 71

-io_buffer_size 81

-io_errlog 81

-ionodefile 78

-labelio 74

-llfile 73

-msg_api 72

-newjob 73

-nodes 72

-pgmmodel 73

-pmdlog 76

-polling_interval 78

-printenv 84

-procs 16, 71

-pulse 71

-resd 71

-retransmit_interval 79

-retry 71

-retrycount 71

-rexmit_buf_cnt 81

-rexmit_buf_size 81

-rmpool 72

-save_llfile 73

-savehostfile 72

-shared_memory 2, 15, 80

-single_thread 80

-stdinmode 75

-stdoutmode 31, 75

-task_affinity 74

-tasks_per_node 72

-thread_stacksize 80

-udp_packet_size 81

-use_bulk_xfer 79

-wait_mode 81

POE considerations
64-bit application 42

AIX 37

AIX function limitation 30

AIX message catalog considerations 33

architecture 33

automount daemon 30

checkpoint and restart 39

child task 37

collective communication call 38

entry point 37

environment overview 25

exit status 26

exits, abnormal 29

exits, normal 29

exits, parallel task 29

Index 239

POE considerations (continued)
file descriptor numbers 29

fork limitations 37

job step default termination 27

job step function 27

job step progression 27

job step termination 27

job termination 29

language bindings 33

large numbers of tasks 35

LoadLeveler 26

M:N threads 38

MALLOCDEBUG 35

mixing collective 30

MPI_INIT 38

MPI_INIT_THREAD 38

MPI_WAIT_MODE 43

network tuning 31

nopoll 43

order requirement for system includes 38

other differences 45

parent task 37

POE additions 27

remote file system 30

reserved environment variables 33

root limitation 30

shell scripts 30

signal handler 28

signal library 25

single threaded 36

STDIN, STDOUT, or STDERR 30, 32

STDIN, STDOUT, or STDERR, output 31

STDIN, STDOUT, or STDERR, rewinding 30

task initialization 37

thread stack size 37

thread termination 37

thread-safe libraries 37

threads 36

user limits 26

user program, passing string arguments 31

using MPI and LAPI together 43

virtual memory segments 34

POE environment variables 69

MP_ACK_INTERVAL 44

MP_ACK_THRESH 9, 45, 76

MP_ADAPTER_USE 70

MP_BUFFER_MEM 4, 5, 65, 66, 77, 218

MP_BULK_MIN_MSG_SIZE 80

MP_CC_SCRATCH_BUFFER 9

MP_CKPTDIR 73

MP_CKPTFILE 73

MP_CLOCK_SOURCE 34, 77

MP_CMDFILE 73

MP_COREDIR 83

MP_COREFILE_FORMAT 83

MP_COREFILE_SIGTERM 83

MP_CPU_USE 70

MP_CSS_INTERRUPT 6, 21, 43, 44, 77

MP_DBXPROMPTMOD 83

MP_DEBUG_INITIAL_STOP 76

MP_DEBUG_NOTIMEOUT 76

MP_EAGER_LIMIT 3, 5, 65, 66, 78, 217

MP_EUIDEVELOP 30, 84, 149, 151

MP_EUIDEVICE 8, 70

MP_EUILIB 2, 3, 70

MP_EUILIBPATH 70

MP_FENCE 84

POE environment variables (continued)
MP_HINTS_FILTERED 23, 78

MP_HOLD_STDIN 32, 75

MP_HOSTFILE 16, 71

MP_INFOLEVEL 33, 39, 76

MP_INSTANCES 8, 71

MP_INTRDELAY 44

MP_IO_BUFFER_SIZE 24, 81

MP_IO_ERRLOG 23, 81

MP_IONODEFILE 20, 78

MP_LABELIO 74

MP_LAPI_INET_ADDR 17

MP_LLFILE 73

MP_MSG_API 43, 72

MP_NEWJOB 73

MP_NOARGLIST 84

MP_NODES 72

MP_PGMMODEL 73

MP_PIPE_SIZE 44

MP_PMDLOG 76

MP_POLLING_INTERVAL 7, 43, 78

MP_PRINTENV 84

MP_PRIORITY 10, 84

MP_PROCS 16, 65, 71

MP_PULSE 71

MP_REMOTEDIR 72

MP_RESD 71

MP_RETRANSMIT_INTERVAL 10, 79

MP_RETRY 71

MP_RETRYCOUNT 71

MP_REXMIT_BUF_CNT 7, 81

MP_REXMIT_BUF_SIZE 7, 81

MP_RMPOOL 72

MP_SAVE_LLFILE 73

MP_SAVEHOSTFILE 72

MP_SHARED_MEMORY 1, 2, 15, 30, 34, 80, 149, 151

MP_SINGLE_THREAD 7, 20, 21, 36, 38, 80

MP_SNDBUF 31

MP_STATISTICS 9, 10, 218

MP_STDINMODE 75

MP_STDOUTMODE 31, 75

MP_SYNC_ON_CONNECT 44

MP_TASK_AFFINITY 10, 74

MP_TASKS_PER_NODE 72

MP_THREAD_STACKSIZE 37, 80

MP_TIMEOUT 72, 81

MP_UDP_PACKET_SIZE 2, 45, 81

MP_USE_BULK_XFER 9, 45, 79

MP_UTE 85

MP_WAIT_MODE 6, 81

MPI_WAIT_MODE 43

POE threads 45

point-to-point communications 3

point-to-point messages 15

polling considerations 6

predefined attribute keys 59

predefined error handler 47

predefined MPI datatype 49

process contention scope 38

process profiling 41

prof 11

profiling
counts 11

export file 12

library 12

message passing 11

MPI nameshift 11

240 IBM PE for AIX 5L V4 R2: MPI Programming Guide

profiling (continued)
shared library 12

profiling library 11

profiling MPI routines 12

program exit without setting exit value 27

programming considerations
user applications 25

protocol striping 8

pSeries high performance switch 67

pthread lock 41

Q
quotation marks 31

R
receive buffer 9

reduction operations
C example 55

datatype arguments 53

examples 55

FORTRAN example 55

MPI 53

predefined 53

Remote Direct Memory Access (RDMA) 9

rendezvous message 6

rendezvous protocol 3, 5, 66, 217, 218

reserved environment variables 33

resource limits 26

restart restrictions 40

results of communicator and group comparisons 59

retransmission buffer 7, 8

return code 19

rewinding STDIN, STDOUT, or STDER 30

root limitation 30

rtl_enable 13

S
sa_sigaction 28

scratch buffer 9

semaphore 42

send buffer 9

service thread 6, 45

setuid program 39

shared memory 1, 2, 15, 30, 39, 41, 42, 67, 217

reclaiming 16

shared memory key collision 16

shared memory performance considerations 16

shmat 39

shmget 34

sigaction 28

SIGALRM 29

SIGIO 29

signal handler 28, 36

POE 28

user defined 28, 29

signal library 25

SIGPIPE 29

sigwait 28

Simultaneous Multi-Threading (SMT) 67

single thread considerations 6

single threaded applications 36

sockets 41

special datatypes 61

special purpose datatypes 49

striping 8

subroutine bindings 151, 175

collective communication 175

communicator 179

conversion functions 182

derived datatype 183

environment management 189

external interfaces 191

group management 193

Info object 195

memory allocation 196

MPI-IO 197, 204

non-blocking collective communication 151

one-sided communication 205

point-to-point communication 208

profiling control 213

topology 214

subroutines
MPE 149

MPI 155

non-blocking collective communication 149

parallel task identification API 145

parallel utility subroutines 87

poe_master_tasks 146

poe_task_info 147

switch clock 34

system contention scope 38

system limits
on size of MPI elements 65

T
tag 66

task limits 67

task synchronization 25

thread context 6

thread stack size
default 37

thread-safe library 7

threaded MPI library 25

threaded programming 36

threads and mixed parallelism with MPI 43

threads constants 63

threads library 25

threads library considerations
AIX signals 28

topologies 59

trademarks 225

tuning parameter
sb_max 2

udp_recvspace 2

udp_sendspace 2

U
UDP ports 8

UDP/IP 2, 4

UDP/IP transport 2

unacknowledged packets 10

unsent data 66

upcall 4, 6

user resource limits 26

User Space 1, 2, 4

User Space FIFO mechanism 8

User Space FIFO packet buffer 8

Index 241

User Space library 1

User space protocol 43

User Space transport 2, 3, 6

User Space window 3

V
virtual address space 9

virtual memory segments 34

W
wait

MPI 1, 2, 3, 4, 6

window 66

X
xprofiler 11

242 IBM PE for AIX 5L V4 R2: MPI Programming Guide

Readers’ comments – We’d like to hear from you

IBM Parallel Environment for AIX 5L

MPI Programming Guide

Version 4 Release 2

 Publication No. SA22-7945-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7945-02

SA22-7945-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-F83

SA22-7945-02

	Contents
	Tables
	About this book
	Who should read this book
	How this book is organized
	Conventions and terminology used in this book
	Abbreviated names

	Prerequisite and related information
	Using LookAt to look up message explanations

	How to send your comments
	National language support (NLS)
	Summary of changes for Parallel Environment 4.2

	Chapter 1. Performance Considerations for the MPI Library
	Message transport mechanisms
	Shared memory considerations
	MPI IP performance
	User Space considerations

	MPI point-to-point communications
	Eager messages
	Rendezvous messages

	Polling and single thread considerations
	LAPI send side copy
	Striping
	Remote Direct Memory Access (RDMA) considerations
	Other considerations

	Chapter 2. Profiling message passing
	AIX profiling
	MPI nameshift profiling
	MPI Nameshift profiling procedure

	Chapter 3. Using shared memory
	Point-to-point communications
	Collective communications
	Shared memory performance considerations
	Reclaiming shared memory
	Using POE with multiple Ethernet adapters and shared memory

	Chapter 4. Performing parallel I/O with MPI
	Definition of MPI-IO
	Features of MPI-IO
	Considerations for MPI-IO
	MPI-IO API user tasks
	Working with files
	Opening a file (MPI_FILE_OPEN)
	Other file tasks

	Error handling
	Logging I/O errors

	Working with Info objects
	Using datatype constructors
	Setting the size of the data buffer

	MPI-IO file inter-operability

	Chapter 5. Programming considerations for user applications in POE
	The MPI library
	The signal library has been removed

	Parallel Operating Environment overview
	POE user limits
	Exit status
	POE job step function
	POE additions to the user executable
	Signal handlers
	Handling AIX signals
	SIGALRM
	SIGIO
	SIGPIPE

	Do not hard code file descriptor numbers
	Termination of a parallel job
	Do not run your program as root
	AIX function limitations
	Shell execution
	Do not rewind STDIN, STDOUT, or STDERR
	Do not match blocking and non-blocking collectives
	Passing string arguments to your program correctly
	POE argument limits
	Network tuning considerations
	Standard I/O requires special attention
	STDIN and STDOUT piping example

	Reserved environment variables
	AIX message catalog considerations
	Language bindings
	Available virtual memory segments
	Using a switch clock as a time source
	Running applications with large numbers of tasks
	Running POE with MALLOCDEBUG

	Threaded programming
	Running single threaded applications
	POE gets control first and handles task initialization
	Limitations in setting the thread stack size
	Forks are limited
	Thread-safe libraries
	Program and thread termination
	Order requirement for system includes
	Using MPI_INIT or MPI_INIT_THREAD
	Collective communication calls
	Support for M:N threads
	Checkpoint and restart limitations
	Programs that cannot be checkpointed
	Program restrictions
	AIX function restrictions
	Node restrictions
	Task-related restrictions
	Pthread and atomic lock restrictions
	Other restrictions

	64-bit application considerations
	MPI_WAIT_MODE: the nopoll option
	Mixed parallelism with MPI and threads

	Using MPI and LAPI in the same program
	Differences between MPI in PE 3.2 and PE Version 4
	Differences between MPI in PE 4.1 and PE 4.2
	Other differences
	POE-supplied threads

	Chapter 6. Using error handlers
	Predefined error handler for C++

	Chapter 7. Predefined MPI datatypes
	Special purpose datatypes
	Datatypes for C language bindings
	Datatypes for FORTRAN language bindings
	Datatypes for reduction functions (C reduction types)
	Datatypes for reduction functions (FORTRAN reduction types)

	Chapter 8. MPI reduction operations
	Predefined operations
	Datatype arguments of reduction operations
	Valid datatypes for the op option

	Examples
	C example
	FORTRAN example

	Chapter 9. C++ MPI constants
	Error classes
	Maximum sizes
	Environment inquiry keys
	Predefined attribute keys
	Results of communicator and group comparisons
	Topologies
	File operation constants
	MPI-IO constants
	One-sided constants
	Combiner constants used for datatype decoding functions
	Assorted constants
	Collective constants
	Error handling specifiers
	Special datatypes for construction of derived datatypes
	Elementary datatypes (C and C++)
	Elementary datatypes (FORTRAN)
	Datatypes for reduction functions (C and C++)
	Datatypes for reduction functions (FORTRAN)
	Optional datatypes
	Collective operations
	Null handles
	Empty group
	Threads constants
	FORTRAN 90 datatype matching constants

	Chapter 10. MPI size limits
	System limits
	Maximum number of tasks and tasks per node

	Chapter 11. POE environment variables and command-line flags
	MP_BUFFER_MEM details

	Chapter 12. Parallel utility subroutines
	mpc_isatty
	MP_BANDWIDTH, mpc_bandwidth
	MP_DISABLEINTR, mpc_disableintr
	MP_ENABLEINTR, mpc_enableintr
	MP_FLUSH, mpc_flush
	MP_INIT_CKPT, mpc_init_ckpt
	MP_QUERYINTR, mpc_queryintr
	MP_QUERYINTRDELAY, mpc_queryintrdelay
	MP_SET_CKPT_CALLBACKS, mpc_set_ckpt_callbacks
	MP_SETINTRDELAY, mpc_setintrdelay
	MP_STATISTICS_WRITE, mpc_statistics_write
	MP_STATISTICS_ZERO, mpc_statistics_zero
	MP_STDOUT_MODE, mpc_stdout_mode
	MP_STDOUTMODE_QUERY, mpc_stdoutmode_query
	MP_UNSET_CKPT_CALLBACKS, mpc_unset_ckpt_callbacks
	pe_dbg_breakpoint
	pe_dbg_checkpnt
	pe_dbg_checkpnt_wait
	pe_dbg_getcrid
	pe_dbg_getrtid
	pe_dbg_getvtid
	pe_dbg_read_cr_errfile
	pe_dbg_restart

	Chapter 13. Parallel task identification API subroutines
	poe_master_tasks
	poe_task_info

	Appendix A. MPE subroutine summary
	Appendix B. MPE subroutine bindings
	Bindings for non-blocking collective communication

	Appendix C. MPI subroutine and function summary
	Appendix D. MPI subroutine bindings
	Bindings for collective communication
	Bindings for communicators
	Bindings for conversion functions
	Bindings for derived datatypes
	Bindings for environment management
	Bindings for external interfaces
	Bindings for group management
	Bindings for Info objects
	Bindings for memory allocation
	Bindings for MPI-IO
	Bindings for MPI_Status objects
	Bindings for one-sided communication
	Bindings for point-to-point communication
	Binding for profiling control
	Bindings for topologies

	Appendix E. PE MPI buffer management for eager protocol
	Appendix F. Accessibility
	Accessibility information
	Using assistive technologies

	Notices
	Trademarks
	Acknowledgments

	Glossary
	Index
	Readers' comments – We'd like to hear from you

